首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we investigate the global exponential stability of non-autonomous fuzzy cellular neural networks (FCNNs) with Dirichlet boundary conditions and reaction–diffusion terms. By constructing a suitable Lyapunov functional and utilizing some inequality techniques, we obtain some sufficient conditions for the uniqueness and global exponential stability of the equilibrium solution. The result is easy to check and plays an important role in the design and applications of globally exponentially stable fuzzy neural circuits. Finally, the utility of our result is illustrated via a numerical example.  相似文献   

2.
In this paper, some sufficient conditions ensuring mean square exponential stability of the equilibrium point of a class of stochastic neural networks with reaction–diffusion terms and time-varying delays are obtained. The conditions involving the effect of diffusion terms reduce the conservatism of the previous results. Finally, we give a numerical example to verify the effectiveness of our results.  相似文献   

3.
The stochastic exponential robust stability is considered for a class of delayed neural networks with reaction–diffusion terms and Markov jumping parameters in this paper. It is assumed that the uncertain weight matrices belong to the given interval matrices. Some sufficient conditions for the stochastic exponential robust stability of the system are established by applying vector Lyapunov function method and M-matrix theory. The obtained results involving the effect of reaction–diffusion improve the existing conditions. Finally, two examples with numerical simulations are given to illustrate the obtained results.  相似文献   

4.
In this paper, we study delayed reaction–diffusion fuzzy neural networks with general boundary conditions. By using topology degree theory and constructing suitable Lyapunov functional, some sufficient conditions are given to ensure the existence, uniqueness and globally exponential stability of the equilibrium point. Finally, an example is given to verify the theoretical analysis.  相似文献   

5.
In this paper, a class of impulsive Cohen–Grossberg neural networks with time-varying delays and reaction–diffusion is formulated and investigated. By employing delay differential inequality and the linear matrix inequality (LMI) optimization approach, some sufficient conditions ensuring global exponential stability of equilibrium point for impulsive Cohen–Grossberg neural networks with time-varying delays and diffusion are obtained. In particular, the estimate of the exponential convergence rate is also provided, which depends on system parameters, diffusion effect and impulsive disturbed intention. It is believed that these results are significant and useful for the design and applications of Cohen–Grossberg neural networks. An example is given to show the effectiveness of the results obtained here.  相似文献   

6.
In this paper, we investigate a class of impulsive Cohen–Grossberg neural networks with distributed delays and reaction–diffusion terms. By establishing an integro-differential inequality with impulsive initial conditions and applying M-matrix theory, we find some sufficient conditions ensuring the existence, uniqueness, global exponential stability and global robust exponential stability of equilibrium point for impulsive Cohen–Grossberg neural networks with distributed delays and reaction–diffusion terms. An example is given to illustrate the results obtained here.  相似文献   

7.
The paper is concerned with the problem of robust asymptotic stability analysis of stochastic Cohen–Grossberg neural networks with discrete and distributed time-varying delays. Based on the Lyapunov stability theory and linear matrix inequality (LMI) technology, some sufficient conditions are derived to ensure the global robust convergence of the equilibrium point. The proposed conditions can be checked easily by LMI Control Toolbox in Matlab. Furthermore, all the results are obtained under mild conditions, assuming neither differentiability nor strict monotonicity for activation function. A numerical example is given to demonstrate the effectiveness of our results.  相似文献   

8.
9.
10.
11.
In this paper, the global stability problem for a general discrete Cohen–Grossberg neural network with finite and infinite delays is investigated. A simple criterion ensuring the global asymptotical stability is established, by applying the Lyapunov method and graph theory. Finally, an example showing the effectiveness of the provided criterion is given.  相似文献   

12.
When modeling neural networks in a real world, not only diffusion effect and fuzziness cannot be avoided, but also self-inhibitions, interconnection weights, and inputs should vary as time varies. In this paper, we discuss the dynamical behaviors of delayed reaction–diffusion fuzzy cellular neural networks with varying periodic self-inhibitions, interconnection weights as well as inputs. By using Halanay’s delay differential inequality, MM-matrix theory and analytic methods, some new sufficient conditions are obtained to ensure the existence, uniqueness, and global exponential stability of the periodic solution, and the exponentially convergent rate index is also estimated. In particular, the traditional assumption on the differentiability of the time-varying delays is no longer needed. The methodology developed in this paper is shown to be simple and effective for the exponential periodicity and stability analysis of neural networks with time-varying delays. Two examples are given to show the usefulness of the obtained results that are less restrictive than recently known criteria.  相似文献   

13.
This paper is concerned with a time-delayed Lotka–Volterra competition reaction–diffusion system with homogeneous Neumann boundary conditions. Some explicit and easily verifiable conditions are obtained for the global asymptotic stability of all forms of nonnegative semitrivial constant steady-state solutions. These conditions involve only the competing rate constants and are independent of the diffusion–convection and time delays. The result of global asymptotic stability implies the nonexistence of positive steady-state solutions, and gives some extinction results of the competing species in the ecological sense. The instability of the trivial steady-state solution is also shown.  相似文献   

14.
In this paper, the global asymptotic stability of impulsive stochastic Cohen–Grossberg neural networks with mixed delays is investigated by using Lyapunov–Krasovskii functional method and the linear matrix inequality (LMI) technique. The mixed time delays comprise both the multiple time-varying and continuously distributed delays. Some new sufficient conditions are obtained to guarantee the global asymptotic stability of the addressed model in the stochastic sense using the powerful MATLAB LMI toolbox. The results extend and improve the earlier publications. Two numerical examples are given to illustrate the effectiveness of our results.  相似文献   

15.
A class of high-order Cohen–Grossberg neural networks with distributed delays is investigated in this paper. Sufficient conditions to guarantee the uniqueness and global exponential stability of periodic solutions of such networks are established by using suitable Lypunov function and the properties of M-matrix. The results in this paper improve the earlier publications.  相似文献   

16.
17.
In this paper, the adaptive synchronization in an array of linearly coupled neural networks with reaction–diffusion terms and time delays is discussed. Based on the LaSalle invariant principle of functional differential equations and the adaptive feedback control technique, some sufficient conditions for adaptive synchronization of such a system are obtained. Finally, a numerical example is given to show the effectiveness of the proposed synchronization method.  相似文献   

18.
In this paper, a class of Cohen–Grossberg neural networks with time-varying delays are considered. Without assuming the boundedness and monotonicity of activation functions, we establish new sufficient conditions for the existence, uniqueness and global asymptotic stability of the equilibrium point for such delayed Cohen–Grossberg neural networks. Numerical examples are provided to show that the proposed criteria are less conservative than some results in the literature.  相似文献   

19.
In the Lotka–Volterra competition system with N-competing species if the effect of dispersion and time-delays are both taken into consideration, then the densities of the competing species are governed by a coupled system of reaction–diffusion equations with time-delays. The aim of this paper is to investigate the asymptotic behavior of the time-dependent solution in relation to a positive uniform solution of the corresponding steady-state problem in a bounded domain with Neumann boundary condition, including the existence and uniqueness of a positive steady-state solution. A simple and easily verifiable condition is given to the competing rate constants to ensure the global asymptotic stability of the positive steady-state solution. This result leads to the permanence of the competing system, the instability of the trivial and all forms of semitrivial solutions, and the nonexistence of nonuniform steady-state solution. The condition for the global asymptotic stability is independent of diffusion and time-delays, and the conclusions for the reaction–diffusion system are directly applicable to the corresponding ordinary differential system.  相似文献   

20.
In this paper, we investigate a class of fuzzy Cohen-Grossberg neural networks with time delays and impulsive effects. By employing an inequality technique, we find sufficient conditions for the existence, uniqueness, global exponential stability of the equilibrium without using the M-matrix theory. An example is given to illustrate the effectiveness of the obtained results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号