首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigate the nonlinear dynamics of an electromechanical transducer formed by a ferromagnetic mobile piece subjected to harmonic base oscillations. The normal form theory is applied to analyze the stability conditions of a Fold-Hopf bifurcation generated by a nonlinear control law consisting of an excitation electric tension and an external force applied to the mobile piece. The self-oscillating behavior is studied from the Krylov–Bogoliuvov method to deduce an approximate equation for the frequency of the oscillation that arises from the Fold-Hopf bifurcation. This information is used to choose appropriate values for the amplitude and frequency of the harmonic base vibrations to obtain chaotic oscillations. The chaotic motions are examined by means of sensitivity dependence, Lyapunov exponents, power spectral density, Poincaré sections and bifurcation diagram. The chaotic oscillations are used in conjunction with the nonlinear control law to drive the mobile piece to a desired set point. A detailed computational study allows us to corroborate the analytical results.  相似文献   

2.
In this paper, a new method to synchronize two identical chaotic recurrent neural networks is proposed. Using the drive-response concept, a nonlinear feedback control law is derived to achieve the state synchronization of the two identical chaotic neural networks. Furthermore, based on the Lyapunov method, a delay independent sufficient synchronization condition in terms of linear matrix inequality (LMI) is obtained. A numerical example with graphical illustrations is given to illuminate the presented synchronization scheme.  相似文献   

3.
In this paper a nonlinear delayed feedback control is proposed to control chaos in an Atomic Force Microscope (AFM) system. The chaotic behavior of the system is suppressed by stabilizing one of its first-order Unstable Periodic Orbits (UPOs). At first, it is assumed that the system parameters are known, and a nonlinear delayed feedback control is designed to stabilize the UPO of the system. Then, in the presence of model parameter uncertainties, the proposed delayed feedback control law is modified via sliding mode scheme. The effectiveness of the presented methods is numerically investigated by stabilizing the unstable first-order periodic orbit of the AFM system. Simulation results show the high performance of the methods for chaos elimination in AFM systems.  相似文献   

4.
In this paper, designing an appropriate linear and nonlinear feedback control, the two identical integer order chaotic systems are synchronized by analytically and numerically. It has been realizing that, synchronization using linear feedback control method is efficient than nonlinear feedback control method due to the less computational complexity and the synchronization error. ElGamal public key cryptosystem is described through the proposed Diffie–Hellman key exchange protocol based on the synchronized chaotic systems using linear feedback control and their security are analyzed. The numerical simulations are given to validate the correctness of the proposed synchronization of chaotic systems and the ElGamal cryptosystem.  相似文献   

5.
粘弹性板混沌振动的输出变量反馈线性化控制   总被引:6,自引:2,他引:4  
研究了粘弹性板混沌振动的控制问题· 应用非线性系统精确线性化控制理论导出了一类非仿射控制系统的非线性反馈控制律· 建立了描述材料非线性的粘弹性板运动的数学模型并利用Calerkin 方法进行简化· 采用相空间曲线和频率谱密度函数说明了在特定参数条件下系统将出现混沌振动,并以位移为输出变量将混沌振动控制为给定的周期运动·  相似文献   

6.
In this paper, we consider the problem of synchronizing a master–slave chaotic system in the sampled-data setting. We consider both the intermittent coupling and continuous coupling cases. We use an Euler approximation technique to discretize a continuous-time chaotic oscillator containing a continuous nonlinear function. Next, we formulate the problem of global asymptotic synchronization of the sampled-data master–slave chaotic system as equivalent to the states of a corresponding error system asymptotically converging to zero for arbitrary initial conditions. We begin by developing a pulse-based intermittent control strategy for chaos synchronization. Using the discrete-time Lyapunov stability theory and the linear matrix inequality (LMI) framework, we construct a state feedback periodic pulse control law which yields global asymptotic synchronization of the sampled-data master–slave chaotic system for arbitrary initial conditions. We obtain a continuously coupled sampled-data feedback control law as a special case of the pulse-based feedback control. Finally, we provide experimental validation of our results by implementing, on a set of microcontrollers endowed with RF communication capability, a sampled-data master–slave chaotic system based on Chua’s circuit.  相似文献   

7.
For the power systems, the stabilization and tracking of voltage collapse trajectory, which involves severe nonlinear and nonstationary (unstable) features, is somewhat difficult to achieve. In this paper, we choose a widely used three-bus power system to be our case study. The study shows that the system experiences a Hopf bifurcation point (subcritical point) leads to chaos throughout period-doubling route. A model-based control strategy based on global state feedback linearization (GLC) is applied to the power system to control the chaotic behavior. The performance of GLC is compared with that for a nonlinear state feedback control.  相似文献   

8.
Different methods are proposed to control chaotic behaviour of the Nuclear Spin Generator (NSG) and Rossler continuous dynamical systems. Linear and nonlinear feedback control techniques are used to suppress chaos. The stabilization of unstable fixed point or unstable periodic solution of chaotic behaviour is achieved. The controlled system is stable under some conditions on the parameters of the system. Stability of the controlled system is determined by the Routh–Hurwitz criterion and Lyapunov direct method. Numerical simulation results are included to show the control process.  相似文献   

9.
This work presents the synchronization between two different chaotic systems by using an adaptive feedback control scheme. The adaptive synchronization problem between an electrostatic system and electromechanical transducer has been investigated. An adaptive linear feedback law with two controllers is proposed to ensure the global chaos synchronization of the nonlinear electrostatic and electromechanical systems. Numerical simulations results are presented to demonstrate the effectiveness of the proposed method.  相似文献   

10.
The dynamics of a gyro in gimbal with a PID controller to obtain steady state, self-oscillating and chaotic motion is considered in this paper. The mathematical model of the whole system is deduced from the gyroscope nutation theory and from a feedback control system formed by a PID controller with constrained integral action. The paper shows that the gyro and the associated PID feedback control system have multiple equilibrium points, and from the analysis of a Poincaré–Andronov–Hopf bifurcation at the equilibrium points, it is possible to deduce the conditions, which give regular and self-oscillating behaviour. The calculation of the first Lyapunov value is used to predict the motion of the gyro in order to obtain a desired equilibrium point or self-oscillating behaviour. The mechanism of the stability loss of the gyro under small vibrations of the gyro platform and the appearance of chaotic motion is also presented. Numerical simulations are performed to verify the analytical results.  相似文献   

11.
Chaos theory is considered a novel way of understanding the behaviour of nonlinear dynamic systems. It is well known that the evaluation of chaotic systems is dependent on initial conditions since exponential growth error is a common characteristic. This present paper evaluates the effects of a nonlinear dynamic system in Istanbul Stock Exchange, based on time series. The reliability of predicting stock behaviour depends on this fact. In other words, the aim is to prove that if ISE daily index return shows chaotic behaviour.  相似文献   

12.
This paper considers an infinite-time optimal damping control problem for a class of nonlinear systems with sinusoidal disturbances. A successive approximation approach (SAA) is applied to design feedforward and feedback optimal controllers. By using the SAA, the original optimal control problem is transformed into a sequence of nonhomogeneous linear two-point boundary value (TPBV) problems. The existence and uniqueness of the optimal control law are proved. The optimal control law is derived from a Riccati equation, matrix equations and an adjoint vector sequence, which consists of accurate linear feedforward and feedback terms and a nonlinear compensation term. And the nonlinear compensation term is the limit of the adjoint vector sequence. By using a finite term of the adjoint vector sequence, we can get an approximate optimal control law. A numerical example shows that the algorithm is effective and robust with respect to sinusoidal disturbances.  相似文献   

13.
In this paper the problem of chaos control in single mode lateral oscillations of spinning disks is studied. At first, using the harmonic balance method, one of the periodic orbits of system is evaluated. Then proposing a nonlinear feedback strategy a control law is presented for chaos elimination by tracking the mentioned periodic solution. It is shown that although the system is not input-state feedback linearizable, by defining an output signal and using the input–output linearization method, the objective of complete periodic orbit tracking is achieved. The sufficient condition for this purpose is presented, and the performance of proposed method is examined by numerical simulation.  相似文献   

14.
An adaptive feedback control of linearizable chaotic systems   总被引:5,自引:0,他引:5  
This paper proposes an adaptive feedback controller for a class of chaotic systems. This controller can be used for tracking a smooth orbit that can be a limit cycle or a chaotic orbit of another system. Based on Lyapunov approach, the adaptation law is determined to tune the controller gain vector in order to track a predetermined linearizing feedback control. To demonstrate the efficiency of the proposed scheme, two well-known chaotic systems namely Chua’s circuit and a Lur’e-like system are considered as illustrative examples.  相似文献   

15.
In this work, the feedback control method is proposed to control the behaviour of Liu chaotic dynamical system. The controlled system is stable under some conditions on the parameters of the system determined by Routh-Hurwitz criterion. This paper also presents the adaptive modified function projective synchronization (AMFPS) between two identical Liu chaotic dynamical systems. Based on the Lyapunov stability theorem, adaptive control laws are designed to achieving the AMFPS. Finally, some numerical simulations are obtained to validate the proposed methods.  相似文献   

16.
This paper presents a new hyper-chaotic system obtained by adding a nonlinear controller to the third equation of the three-dimensional autonomous Chen–Lee chaotic system. Computer simulations demonstrated the hyper-chaotic dynamic behaviors of the system. Numerical results revealed that the new hyper-chaotic system possesses two positive exponents. It was also found that the structure of the hyper-chaotic attractors is more complex than those of the Chen–Lee chaotic system. Furthermore, the hybrid projective synchronization (HPS) of the new hyper-chaotic systems was studied using a nonlinear feedback control. The nonlinear controller was designed according to Lyapunov’s direct method to guarantee HPS, which includes synchronization, anti-synchronization, and projective synchronization. Numerical examples are presented in order to illustrate HPS.  相似文献   

17.
Generalized function projective (lag, anticipated and complete) synchronization between two different complex networks with nonidentical nodes is investigated in this paper. Based on Barbalat’s lemma, some sufficient synchronization criteria are derived by applying the nonlinear feedback control. Although previous work studied function projective synchronization on complex dynamical networks, the dynamics of the nodes are coupled partially linear chaotic systems. In our work, the dynamics of the nodes of the complex networks are any chaotic systems without the limitation of the partial linearity. In addition, each network can be undirected or directed, connected or disconnected, and nodes in either network may have identical or different dynamics. The proposed strategy is applicable to almost all kinds of complex networks. Numerical simulations further verify the effectiveness and feasibility of the proposed synchronization method. Numeric evidence shows that the synchronization rate is sensitively influenced by the feedback strength, the time delay, the network size and the network topological structure.  相似文献   

18.
A nonlinear differential kinetic model describing dynamical behaviours of an atom at a fatigue crack tip is developed in this paper. It is assumed that the forces acted on this atom by its surrounding atoms consist of the following three components: (1) an elastic restoring force governed by Leonard-Jones potential, which describes the elastic interaction between atoms; (2) a nonlinear damping force proportional to its velocity through a linear function of its displacement as a coefficient that empirically simulates the energy loss from the crack tip to its surroundings; (3) an external remote driving force to represent thermally activated energy supplied to the crack tip from the surroundings. Based on these assumptions of the interaction forces between the atoms around the crack tip, a nonlinear dynamic equation describing the motion of the atom at a crack tip using the Newton’s second principle is derived. For a periodic external force and a random one influenced by parameters omitted, deterministic and a stochastic analyses on the dynamic equation obtained above are completed. Based on the theories of the Hopf bifurcation, global bifurcation and stochastic bifurcation, the extent and some possible implications of the existence of atomic-scale chaotic and stochastic bifurcative motions involving the fracture behaviour of actual materials are systematically and qualitatively discussed and the extreme sensitivity of chaotic motions to minute changes in initial conditions is explored. As demonstrated in the paper, chaotic behaviour may be observed in the case of a larger amplitude of the driving force and a smaller damping constant. The white noise introduced in the atomistic motion process may leads to a drift of the divergence point of the nonlinear stochastic differential kinetic system in contrast to the homoclinic divergence of the nonlinear deterministic differential kinetic system.  相似文献   

19.
This paper deals with the tracking control of nonlinear chaotic systems with dynamics uncertainties. A robust control strategy is developed to control a class of nonlinear chaotic systems with uncertainties. The proposed strategy is an input-output control scheme which comprises an uncertainty estimator and a linearizing-like feedback. The control time is explicitly computed. Computer simulations of the Duffing system are provided to verify the validity of the proposed control scheme.  相似文献   

20.
Chaos control is employed for the stabilization of unstable periodic orbits (UPOs) embedded in chaotic attractors. The extended time-delayed feedback control uses a continuous feedback loop incorporating information from previous states of the system in order to stabilize unstable orbits. This article deals with the chaos control of a nonlinear pendulum employing the extended time-delayed feedback control method. The control law leads to delay-differential equations (DDEs) that contain derivatives that depend on the solution of previous time instants. A fourth-order Runge–Kutta method with linear interpolation on the delayed variables is employed for numerical simulations of the DDEs and its initial function is estimated by a Taylor series expansion. During the learning stage, the UPOs are identified by the close-return method and control parameters are chosen for each desired UPO by defining situations where the largest Lyapunov exponent becomes negative. Analyses of a nonlinear pendulum are carried out by considering signals that are generated by numerical integration of the mathematical model using experimentally identified parameters. Results show the capability of the control procedure to stabilize UPOs of the dynamical system, highlighting some difficulties to achieve the stabilization of the desired orbit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号