首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
 Colloidal ternary ZnCdSe nanocrystals were synthesized via a single-step process by reacting Cd and Zn oleates in trioctylphosphine oxide (TOPO) solution with Se-TOP (trioctylphosphine) solution. Initial red shift of bandgap absorption during the early reaction stage was observed due to the growth of Cd-rich ZnCdSe nanocrystals. Significant blue shifts of photoluminescent emission peaks indicated the formation of ternary nanocrystals during reaction, and emission wavelength was dependent on reaction time and temperature. Initial red shift and subsequent blue shift of bandgap absorption in ZnCdSe nanocrystals are explained in terms of nucleation and growth processes controlled by reactivity and diffusion of precursors.  相似文献   

2.
Here, we present physical–chemical properties of Linde type A (LTA) zeolite crystals synthesized via conventional hydrothermal and microwave heating methods. Both heating methods produced LTA crystals that were sub-micron in size, highly negatively charged, super-hydrophilic, and stable when dispersed in water. However, microwave heating produced relatively narrow crystal size distributions, required much shorter heating times, and did not significantly change composition, crystallinity, or surface chemistry. Moreover, microwave heating allowed systematic variation of crystal size by varying heating temperature and time during the crystallization reaction, thus producing a continuous gradient of crystal sizes ranging from about 90 to 300 nm. In ion-exchange studies, colloidal zeolites exhibited excellent sorption kinetics and capacity for divalent metal ions, suggesting their potential for use in water softening, scale inhibition, and scavenging of toxic metal ions from water.  相似文献   

3.
A nonhydrolytic hot solution synthesis technique was used to grow monodisperse ternary oxide nanocrystals of ZnGa2O4:Eu3+. The shape of ZnGa2O4:Eu3+ nanocrystals was a function of the type of precursor, and their size was controlled by changing the concentration ratio of Zn precursor to surfactant. The crystal structure of synthesized ZnGa2O4 nanocrystals was a cubic spinel with no detectable secondary phases. Photoluminescence of red-emitting ZnGa2O4:Eu3+ nanocrystals resulted in a high (5D0-7F2)/(5D0-7F1) intensity ratio, suggesting that the Eu3+ ions occupy tetrahedral Zn2+ sites or distorted octahedral Ga3+ sites with no inversion symmetry in ZnGa2O4 nanocrystals.  相似文献   

4.
A new synthesis procedure for the preparation of spherical shaped CdTe nanocrystals (NCs) is presented, exhibiting bright luminescence with exceptionally high quantum efficiency (up to 85%). The growth of these NCs occurs in a non-coordinating solvent, octadecene, with the addition of oleic acid/tri-octylphosphine stabilizers, CdO as a precursor for the Cd monomers and additional Cd metal particles as a supplementary Cd reservoir source. The dependence of the crystalline quality and the optical properties of the CdTe NCs, on the initial Cd:Te precursors’ molar ratio, and the reaction duration were investigated. It was demonstrated that the NCs’ properties improved significantly as the initial Cd:Te molar ratios are increased. The obtained NCs’ properties were correlated with measurements of the Cd0 concentration in Cd metal particles, CdTe NCs and in Cd monomer solutions.  相似文献   

5.
Translated from Izvestiya Vysshikh Uchenbykh Zavedenii, Fizika, No. 11, pp. 53–58, November, 1991.  相似文献   

6.
The changes of optical transmission and of the index of refraction were studied in flash evaporated Ge-Sb-S layers. Photobleaching, photodarkening and photoinduced crystallization were observed depending on the composition of layers. The effects are qualitatively explained using the idea of photoinduced atoms and/or chemical bonds rearrangement.Spolená laborato VCHT a FZÚ SAV, Leninovo n. 565, 532 10 Pardubice, Czechoslovakia.We are very grateful to Dr. V. Hulínský, University of Chemical Technology, Prague, for scanning microscope measurements.  相似文献   

7.
Zinc sulfide semiconductor nanocrystals doped Mn2+ have been synthesized via a solution-based method utilizing optimum dopant concentration (4%) and employing polyvinyl pyrrolidone (PVP) and sodium hexametapolyphosphate (SHMP) as capping agents. UV-vis absorbance spectra for all of the synthesized nanocrystals show an exitonic peak at around 310 nm. The particle size and morphology were characterized by scanning electron microscopy (SEM), FT-IR, X-ray diffraction (XRD), transmission electron microscopy (TEM) and photoluminescence spectrum (PL). Diffraction data confirmed that the crystallite size is around 3-5 nm. Room temperature photoluminescence (PL) spectrum for the bare ZnS sample shows a strong band at ∼445 nm. The uncapped and capped(SHMP, PVP) ZnS:Mn2+ samples show a strong and broad band in the ∼580-585 nm range.  相似文献   

8.
Water-soluble magnetite nanocrystals have been prepared by one-step non-alkoxide sol-gel method.The magnetic properties of magnetite nanocrystals obtained are size dependent.The experimental results also reveal that 2-pyrrolidone not only serves as solvent,but also involves surface coordination which renders the magnetite nanoparticles water-soluble and colloidal solution stable.Although the current synthetic approach is a small modification to the non-alkoxide sol-gel method,it allows us to directly obtain...  相似文献   

9.
Nanoindentation measurements of electrophoretically deposited films of colloidal CdSe nanocrystals, capped by organic ligands, show the films have an elastic stiffness modulus of approximately 10 GPa and exhibit viscoplasticity. This mechanical response suggests polymeric features that are attributable to the ligands. After particle cross-linking and partial ligand removal, the films exhibit more features of granularity.  相似文献   

10.
We demonstrate the synthesis of GaN nanocrystals (NCs) with the sizes of less than the doubled exciton Bohr radius leading quantum confinement effects via a single-step technique. The generation of colloidal GaN nanoparticles (NPs) in organic solution through nanosecond (ns) and femtosecond (fs) pulsed laser ablation (PLA) of GaN powder was carried out. Ns PLA in ethanol and polymer matrix resulted in amorphous GaN-NPs with the size distribution of 12.4 ± 7.0 and 6.4 ± 2.3 nm, respectively, whereas fs PLA in ethanol produced colloidal GaN-NCs with spherical shape within 4.2 ± 1.9 nm particle size distribution. XRD and selected area electron diffraction analysis of the product via fs PLA revealed that GaN-NCs are in wurtzite structure. Moreover, X-ray photoelectron spectroscopy measurements also confirm the presence of GaN nanomaterials. The colloidal GaN-NCs solution exhibits strong blue shift in the absorption spectrum compared to that of the GaN-NPs via ns PLA in ethanol. Furthermore, the photoluminescence emission behavior of fs PLA-generated GaN-NCs in the 295–400 nm wavelength range is observed with a peak position located at 305 nm showing a strong blue shift with respect to the bulk GaN.  相似文献   

11.
Theoretical investigations of the electronic, optical and elastic properties of cadmium and zinc chalcogenides in the zinc-blende structure are performed using a pseudopotential formalism. Our results are in reasonable agreement with the available experimental data. Polynomial expressions are obtained for the electron effective mass and the static dielectric constant as a function of the fundamental energy band-gap. Relations of elastic constants ratio to the ionicity are also examined and discussed.  相似文献   

12.
A simple experimental method is used to obtain the evolution of both the refractive index and the linear absorption coefficient as a function of the optical wavelength in the near infrared range (from 900 up to 1700 nm with 10 nm resolution). Several chalcogenide glasses (As2S3, As2Se3, GeSe4) are tested and the corresponding Cauchy coefficients are determined. Comparison of our results shows a good agreement with values available in the literature at some wavelength. Application of this method is used to estimate Cauchy coefficients of Ge10As10Se80 for the first time to our best knowledge.  相似文献   

13.
Colloidal PbS nanocrystals have been synthesized by a developed procedure. UV–Vis absorption and Z-scan technique was also applied to study the nonlinear optical properties of prepared lead sulfide nanocrystals at 532 nm wavelength. The nonlinear refractive (n2) and absorption (β) were determined which are confirming the strong nonlinearity at 532 nm of colloidal PbS nanocrystals. The obtained results have not been reported before. In this study, only a weak thermal optical nonlinearity was observed and the dominating nonlinear response is resulted by the electronic origin. The nonlinear optical properties of prepared sample supported wide applications in nanophotonics.  相似文献   

14.
Single-crystal Au nanosheets and fcc gold nanocrystals of uniform size were synthesized by a novel and simple route. The results of field-emission scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) indicated the formation of the single-crystal structure of gold nanosheets and fcc nanocrystals. Energy-dispersive analysis of X-ray (EDAX) showed absorbance of cetyltrimethylammonium bromide (CTAB) molecules onto the surface of gold nanostructures. Moreover, zeta potential measurements showed that CTAB-coated nanostructures were positively charged and the zeta potential remained almost the same upon centrifugation and redispersion of the resulting nanostructures in methanol, confirming the high stability of the surfactant-protected nanocomposites. Evolution of the nanostructures during the reaction was monitored by TEM observations. The results indicated that the formation of the gold nanostructures followed a two-step mechanism with a bilayer CTAB structure on the surface of the gold nanostructures.  相似文献   

15.
根据带隙与吸收光谱的第一吸收峰峰位之间存在的关系,测量了粒子尺寸分别为4.0 nm和2.5 nm的CdSe纳米晶在不同温度下的吸收光谱,找出了吸收光谱第一吸收峰峰位随温度的变化关系,总结出了CdSe纳米晶的带隙随温度的变化关系.结果表明:CdSe纳米晶材料的发光器件的发光颜色取决于它的带隙.  相似文献   

16.
17.
75As NQR and high-field NMR experiments have been performed on GexAsySe1−xy glasses. Evolution of As bonding structure from arsenic sites with axially symmetric distribution of the electric field gradient (EFG) to highly asymmetric As surroundings has been revealed. Arsenic atoms form pyramidal structural units in Ge2As2Se7 with no evidence of significant concentration of homopolar bonds. In Ge2As2Se5 most of arsenic atoms form structural units with two As-As bonds per atom and asymmetric EFG distribution. Arsenic bondings become more complicated in Ge0.33As0.12Se0.55 where all arsenic sites are highly distorted. The combination of NQR and NMR data provide valuable information on arsenic bonding dynamics in these glasses.  相似文献   

18.
19.
《Journal of luminescence》1996,70(1-6):95-107
Quantum dots of InP, GaP, GaInP2, and GaAs with diameters ranging from 20–80 Å can be synthesized as well-crystallized nanoparticles with bulk zinc blende structure. The synthesis is achieved by heating appropriate organometallic precursors with stabilizers in high boiling solvents for several days to produce QDs, which can then be dissolved in nonpolar organic solvents to form transparent colloidal QD dispersions. The high sample quality of the InP and Gap QDs results in excitonic features in the absorption spectra; excitonic features could not be observed for GaAs or GaInP2 QDs. The GaP and GaInP2 QD colloids exhibit very intense (quantum yields of 15–25%) visible photoluminescence at room temperature. The photoluminescence for InP QDs preparations show two emission bands: one band is in the visible at the band edge of the QD, and a second band appears above 800 nm. The near-IR PL is attributed to deep traps, presumably phosphorus vacancies on the QD surface. This band can be removed after controlled addition of etchant; subsequently, very intense band-edge emission (quantum yield 30%), which is tunable with particle size, is obtained. The QDs were characterized by TEM, SAXS, AFM, powder X-ray diffraction, steady-state optical absorption and photoluminescence spectroscopy, ps to ns transient photoluminescence spectroscopy, and fs to ps pump-probe absorption (i.e., hole-burning) spectroscopy.  相似文献   

20.
Summary At present magnetism is becoming a more and more fundamental science. On the other hand, the solid-state chemists are able to prepare easily many new ?magnetic? phases with a more or less complex crystal structure. There results a conflicting situation between the ideal expected models and the true behaviour of the real crystal. A strategy to tackle this important problem is suggested. Illustrations are given by analysing the properties of ternary compounds with different structural arrangements of their magnetic carriers such as chains or layers. Paper presented at the ?V International Conference on Ternary and Multinary Compounds?, held in Cagliari, September 14–16, 1982.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号