首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 316 毫秒
1.
Nonlinear responses of a rub-impact overhung rotor   总被引:1,自引:0,他引:1  
For a rotor system with bearings and step-diameter shaft in the oxygen pump of an engine, the contact between the rotor and the case is considered, and the chaotic response and bifurcation are investigated. The system is divided into elements of elastic support, shaft and disk, and based on the transfer matrix method, the motion equation of the system is derived, and solved by Newmark integration method. It is found that hardening the support can delay the occurrence of chaos. When rubbing begins, the grazing bifurcation will cause periodic motion to become quasi-period. With variation of system parameters, such as rotating speed, imbalance and external damping, chaotic response can be observed, along with other complex dynamics such as period- doubling bifurcation and torus bifurcation in the response.  相似文献   

2.
Nonlinear dynamic characteristics of rub-impact rotor system with fractional order damping are investigated. The model of rub-impact comprises a radial elastic force and a tangential Coulomb friction force. The fractional order damped rotor system with rubbing malfunction is established. The four order Runge–Kutta method and ten order CFE-Euler method are introduced to simulate the fractional order rub-impact rotor system equations. The effects of the rotating speed ratio, derivative order of damping and mass eccentricity on the system dynamics are investigated using rotor trajectory diagrams, bifurcation diagrams and Poincare map. Various complicated dynamic behaviors and types of routes to chaos are found, including period doubling bifurcation, sudden transition and quasi-periodic from periodic motion to chaos. The analysis results show that the fractional order rub-impact rotor system exhibits rich dynamic behaviors, and that the significant effect of fractional order will contribute to comprehensive understanding of nonlinear dynamics of rub-impact rotor.  相似文献   

3.
This paper focuses on the nonlinear vibration phenomenon caused by aircraft hovering flight in a rub-impact rotor system supported by two general supports with cubic stiffness. The effect of aircraft hovering flight on the rotor system is considered as a maneuver load to formulate the equations of motion, which might result in periodic response instability to the rotor system even the eccentricity is small. The dynamic responses of the system under maneuver load are presented by bifurcation diagrams and the corresponding Lyapunov exponent spectrums. Numerical analyses are carried out to detect the periodic, sub-harmonic and quasi-periodic motions of the system, which are presented by orbit diagrams, phase trajectories, Poincare maps and amplitude power spectrums. The results obtained in this paper will contribute an understanding of the nonlinear dynamic behaviors of aircraft rotor systems in maneuvering flight.  相似文献   

4.
非线性弹性地基上的圆薄板的分岔与混沌问题   总被引:24,自引:0,他引:24  
根据非线性弹性地基上圆薄板大幅度方程,弹性抗力有线性项,三次非线性项和抗弯曲弹性项。在周边固定的条件下,利用Galerkin法得到了一个非线性振动方程。在无外激励情况下,求出在平衡点处的Floquet指数。分析了其稳定性与可能发生的分岔条件。在外激励条件下,用Melnikov方法分析研究了可能发生的混沌振动。通过数字仿真给出了各种地基参数下混沌区域的临界曲线和相平面图。  相似文献   

5.
This work reports on a numerical study undertaken to investigate the imbalance response of a rigid rotor supported by squeeze-film dampers. Two types of damper configurations were considered, namely, dampers without centering springs, and eccentrically operated dampers with centering springs. For a rotor fitted with squeeze-film dampers without centering springs, the study revealed the existence of three regimes of chaotic motion. The route to chaos in the first regime was attributed to a sequence of period-doubling bifurcations of the period-1 (synchronous) rotor response. A period-3 (one-third subharmonic) rotor whirl orbit, which was born from a saddle-node bifurcation, was found to co-exist with the chaotic attractor. The period-3 orbit was also observed to undergo a sequence of period-doubling bifurcations resulting in chaotic vibrations of the rotor. The route to chaos in the third regime of chaotic rotor response, which occurred immediately after the disappearance of the period-3 orbit due to a saddle-node bifurcation, was attributed to a possible boundary crisis. The transitions to chaotic vibrations in the rotor supported by eccentric squeeze-film dampers with centering springs were via the period-doubling cascade and type 3 intermittency routes. The type 3 intermittency transition to chaos was due to an inverse period-doubling bifurcation of the period-2 (one-half subharmonic) rotor response. The unbalance response of the squeeze-film-damper supported rotor presented in this work leads to unique non-synchronous and chaotic vibration signatures. The latter provide some useful insights into the design and development of fault diagnostic tools for rotating machinery that operate in highly nonlinear regimes.  相似文献   

6.
朱怀亮 《应用数学和力学》2002,23(12):1261-1268
对于高速柔性转轴,综合考虑滑移、弯曲、剪切变形、旋转惯性、陀螺效应和动不平衡等因素,运用Timoshenko旋转梁理论,给出弹性体空间运动的一般性描述,通过Hamilton原理建立弯曲-扭转-轴向三维耦合非线性动力学方程,应用参数摄动方法和假设振型方法进行化简,并用数值模拟分析了轴向刚性滑移、剪切变形、截面尺寸和转速等因素对转轴动力学响应的影响。  相似文献   

7.
根据Floquet理论定义了非线性非自治系统周期解的稳定度.从动力系统流的概念出发,给出利用非线性非自治系统稳态周期解受扰后的瞬态响应,计算周期解稳定度的数值计算方法.以稳定度等于零为临界判据,分析计算了滑动轴承平衡和不平衡刚性转子系统的稳定吸引域.研究发现,平衡转子随着转速的升高稳定域减小;不平衡转子随着不平衡量的增大稳定域减小;且工频周期解的稳定域比同样系统条件下平衡点的稳定域小.  相似文献   

8.
研究滚动轴承平衡转子系统在不同轴承内间隙量,不同转速下系统的稳定性及其分岔特性和混沌.考虑Hertz接触力、 滚动体通过振动和轴承径向内间隙等非线性因素建立数学模型,根据Floquet理论分析不同间隙量下滚动轴承转子系统的周期解稳定性, 找到了3种导致周期解失稳的方式:倍周期分岔失稳、拟周期分岔失稳和边界激变导致混沌失稳.通过对各间隙量下转子系统拓扑特性变化和失稳区域的研究,表明滚动轴承间隙量是影响转子系统动力稳定性的一个重要因素.  相似文献   

9.
以三自由度二元机翼为研究对象,将浮沉位移和俯仰位移方向的非线性刚度简化为立方非线性,对于存在间隙的控制面采用双线性刚度代替.考虑准定常气流,建立气动弹性运动方程,通过数值模拟构造峰值-峰值图,反映其在不同气流速度下的振动特征.通过弧长数值连续法构造系统的分岔图,结合Floquet算子研究其稳定性及其分岔类型,所得分岔图和数值模拟的结果相吻合.由分岔图可得系统由于控制面双线性的存在,导致机翼结构振动形态多变,存在多个分岔点和多个不稳定区间,不仅存在极限环振动和非光滑准周期振动,而且在某些不稳定区间出现混沌现象.  相似文献   

10.
High-speed rotors supported by floating ring bearings exhibit beside self-excited vibrations various nonlinear vibration effects, which may cause the damage of the rotor. After deriving the equations of motion of a perfectly balanced turbocharger rotor supported by floating ring bearings, bifurcation analyses are carried out with both rigid and flexible model by applying numerical continuation methods. Thereby, the main focus of the investigation is on the critical bifurcations emanating destructive limit-cycle oscillations of higher amplitudes. Finally, the influence of the shaft elasticity on the critical limit-cycle oscillations is discussed. (© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
The presence of a crack in a rotor introduces a local flexibility which affects its dynamic response. Moreover, the crack may open and close during the vibration period. The crack status is a function of time and also depends on the rotational speed and the vibration amplitude of the rotor. This nonlinear case is still a challenging research topic especially in the field of closing crack in the rotating shaft. A cohesive zone model is developed in order to analyze the stiffness of a crack in a rotating shaft. The proposed expression will be compared to three different crack models, namely, a breathing crack model, a switching crack model and an open crack model. Moreover, a cohesive law to predict and to analyse the stress at the crack tip is presented. The numerical model is implemented using a finite element formulation. (© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
Using Hamilton variation principle, a nonlinear dynamic model of the system with a finite deforming Rayleigh beam clamped radially to the interior of a rotating rigid ring, under the assumption that the constitutive relation of the beam is linearly elastic, is discussed. The bifurcation behavior of the simple system with the Euler-Bernoulli beam is also discussed. It is revealed that these two models have no influence on the critical bifurcation value and buckling solution in the steady state. Then we use the assumption model method to analyse the bifurcation behavior of the steadily rotating Euler-Bernoulli beam and get two different types of bifurcation behavior which physically exist. Finite element method and shooting method are used to verify the analytical results. The numerical results confirm our research conclusion. Project supported by the National Natural Science Foundation of China (Grant No. 19332022) and Space High Technology Foundation of China.  相似文献   

13.
This paper deals with second order statistics of post buckling load of shear deformable laminated composite plates resting on linear elastic foundation with random system properties. The formulation is based on higher order shear deformation plate theory in general von Karman sense, which includes foundation effect using two-parameter Pasternak model. The random system equations are derived using the principal of virtual work. A finite element method is used for spatial descretization of the laminate with a reasonable accuracy. A perturbation technique has been the first time successfully combined with direct iterative technique by neglecting the changes in nonlinear stiffness matrix due to random variation of transverse displacements during iteration. The numerical results for the second order statistics of post buckling loads are obtained. A detailed study is carried out to highlight the characteristics of the random response and its sensitivity to different foundation parameters, the plate thickness ratio, the plate aspect ratio, the support condition, the stacking sequence and the lamination angle on the post buckling response of the laminate. The results have been compared with existing results and an independent Monte Carlo simulation.  相似文献   

14.
Numerical investigation on the unbalance response of a rigid rotor supported by squeeze-film dampers without centering springs revealed some complex bifurcation features that have not been previously reported in the literature. With the variation of the unbalance parameter (U), the period-1 solution was found to undergo a sequence of period-doubling bifurcations that eventually resulted in chaotic motion. The existence of a period-3 solution, which formed a closed bifurcation curve consisting of a pair of saddle nodes, was for the first time observed in such a system. The chaotic attractor arising from the period-doubling cascade of the period-1 solution, which was observed to co-exist with the period-3 attractor in a narrow range of U values, was eventually annihilated in a collision with the unstable period-3 orbit in a boundary crisis. Similar to the bifurcations of the period-1 solution, the period-3 solution was also found to bifurcate into solutions of period-6 and period-12, which eventually led to chaotic motion. A chaotic attractor was also observed to co-exist with a period-4 orbit. The period-4 orbit was found to undergo a sequence of reverse period-doubling bifurcations resulting in a large amplitude period-1 orbit. The occurrence of non-synchronous and chaotic motion in rotating machinery is undesirable and should be avoided as they introduce cyclic stresses in the rotor, which in turn may rapidly induce fatigue failure. The magnitude of rotor unbalance where non-synchronous and chaotic motion were observed in this study, although higher than the permissible unbalance level for rigid rotating machinery, may nevertheless occur with in-service erosion of the rotor or in the event of a partial or an entire blade failure.  相似文献   

15.
The paper deals with Chebyshev series based analytical solution for the nonlinear flexural response of the elastically supported moderately thick laminated composite rectangular plates subjected to hygro-thermo-mechanical loading. The mathematical formulation is based on higher order shear deformation theory (HSDT) and von-Karman nonlinear kinematics. The elastic foundation is modeled as shear deformable with cubic nonlinearity. The elastic and hygrothermal properties of the fiber reinforced composite material are considered to be dependent on temperature and moisture concentration and have been evaluated utilizing micromechanics model. The quadratic extrapolation technique is used for linearization and fast converging finite double Chebyshev series is used for spatial discretization of the governing nonlinear equations of equilibrium. The effects of Winkler and Pasternak foundation parameters, temperature and moisture concentration on nonlinear flexural response of the laminated composite rectangular plate with different lamination scheme and boundary conditions are presented.  相似文献   

16.
In this paper, we investigate the positive solutions of fourth-order elastic beam equations with both end-points simply supported. By using the approximation theorem of completely continuous operators and the global bifurcation techniques, we obtain the existence of positive solutions of elastic beam equations under some conditions concerning the first eigenvalues corresponding to the relevant linear operators, when the nonlinear term is non-singular or singular, and allowed to change sign.  相似文献   

17.
In this paper the von Kármán model for thin, elastic, infinite plate strip resting on a linear elastic foundation of Winkler type is studied. The infinite plate strip is simply-supported and subjected to evenly distributed compressive loads. The critical values of bifurcation parameters and buckling modes for given frequency of longitudinal waves are found on the basis of investigation of linearized problem. The mathematical nonlinear model is reduced to operator equation with Fredholm type operator of index 0 depending on parameters defined in corresponding Hölder spaces. The Lyapunov-Schmidt reduction and the Crandall-Rabinowitz bifurcation theorem (gradient case) are used to examine the postcritical behaviour of the plate. It is proved that there exists maximal frequency of longitudinal waves depending on the compressive load and the stiffness modulus of foundation.  相似文献   

18.
《数学季刊》2017,(1):7-15
In this paper,we investigate the positive solutions of fourth-order elastic beam equations with both end-points simply supported.By using the approximation theorem of completely continuous operators and the global bifurcation techniques,we obtain the existence of positive solutions of elastic beam equations under some conditions concerning the first eigenvalues corresponding to the relevant linear operators,when the nonlinear term is non-singular or singular,and allowed to change sign.  相似文献   

19.
The paper is devoted to the study of bifurcation in the von Kármán equations with two parameters that describe the behaviour of a thin round elastic plate lying on an elastic base under the action of a compressing force. The problem appears in the mechanics of elastic constructions. We prove the necessary and sufficient condition for bifurcation at points of the set of trivial solutions. Our proof is based on reducing the von Kármán equations to an operator equation in Banach spaces with a nonlinear Fredholm map of index 0 and applying the Crandall-Rabinowitz theorem on simple bifurcation points or a finite-dimensional reduction and degree theory. RID="h1" ID="h1"This research was supported by grant BW of UG no. 5100-5-0153-1 and by grant KBN no. 5 P03A 020 20.  相似文献   

20.
磁轴承失灵后坠落转子瞬态振动灾变机理研究   总被引:1,自引:0,他引:1  
方之楚 《应用数学和力学》2002,23(11):1177-1182
研究一个带磁轴承的转子系统,在磁轴承失灵后转子坠入备用轴承引起的非线性瞬态振动。通过严格建立运动方程和数值仿真计算,详尽地分析了坠落转子转动角速度变化和轴颈与备用轴承接触点法向力变化的时间历程及备用轴承振动位移的频谱,发现系统发生灾变破坏的原因是由于高速不平衡阻尼转子减速通过临界速度时引起的强烈非稳态受迫弯曲振动加上轴颈与备用轴承接触点碰摩的非线性引起的高频颤振。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号