共查询到20条相似文献,搜索用时 9 毫秒
1.
冰片的近红外光谱法检测 总被引:7,自引:0,他引:7
红外光谱技术能够反映样品的综合信息 ,易于在线应用 ,所以若将该技术应用于中成药生产的在线质量监控 ,可以提高中成药的质量控制标准 ,加快中药现代化的进程。冰片作为常用的中药 ,是多种中成药的有效成分之一。文章对冰片在近红外区域的光谱特性进行了实验研究。通过测量 ,得到了冰片在近红外的特征吸收波段。在建模实验中通过建立偏最小二乘法 (PLS)校正模型得到了理想的实验结果 ,2 5个样品冰片含量的预测值和标称值间有良好的线性关系 ,预测标准偏差为 0 2 8mg·mL-1 。实验结果表明红外光谱技术可以用于中成药有效成分的检测和中成药质量控制的研究 相似文献
2.
基于红外与近红外光谱的烟叶部位识别 总被引:2,自引:0,他引:2
以烟叶样品的红外及近红外光谱为基础,采用基于主成分分析的马氏距离判别模型,研究了不同类型仪器、建模区间、模型参数及光谱预处理方式对烟叶部位识别准确率的影响。结果表明根据红外和近红外光谱均可对烟叶部位进行良好识别,近红外光谱因包含的样品信息更为丰富,可以得到比红外光谱更好的识别效果。其中仪器A的二阶导数光谱给出的烟叶部位识别准确率最高,可达94.11%;仪器B的一阶导数及SNV光谱给出的烟叶部位识别准确率次之,为88.24%;Nicolet公司的Antaris360傅里叶红外仪的一阶导数光谱给出的烟叶部位识别准确率为82.35%。对于同一仪器,最佳建模区间及主成分个数随样本情况及光谱预处理方式而变。 相似文献
3.
近红外光谱的河蟹新鲜度快速检测研究 总被引:1,自引:0,他引:1
河蟹的新鲜度是大多数消费者在购买时所考虑的最重要的因素,挥发性盐基氮(TVB-N)是当前国际通用的评价肉类新鲜度的指标,但其检测工序繁琐、耗费时间长,无法满足当前市场对河蟹新鲜度评价的迫切需求。因此,建立一种快速检测河蟹新鲜度的方法是当前急需解决的一大难题。将购于水产市场的河蟹,采用聚乙烯充氧袋快速运至实验室,样本数共126只。在洁净的工作台上处理后,将螃蟹分为42个实验样品,每个样品3只鲜活螃蟹;42个实验样品放在低温4℃的恒温生化培养箱中贮藏,每天从培养箱中按时取出6个螃蟹样品进行光谱数据采集及新鲜度指标TVB-N的测定,历时7 d。采用近红外光谱(NIRS)对贮藏在不同时间下的河蟹新鲜度进行评价,使用挥发性盐基氮(TVB-N)作为评价河蟹新鲜度的指标,首先通过比较经五折交叉验证(5-fold CrossValidation)算法、 kennard-stone(KS)算法、光谱-理化值共生距离(SPXY)算法三种样本划分方法处理后所建模型的预测效果确定最优样本划分方法,最终采用五折交叉验证(5-fold CrossValidation)算法对样本进行划分。其中的32个样品被划分为训练集进行模型构建,其余的10个样品被划分为测试集用于模型检验。然后在经过五折交叉验证法对样本进行划分的基础上,分别采用小波变换(WT)、 Savitzky-Golay平滑、一阶导数法(Db1)、二阶导数法(Db2)这4种单一算法以及小波变换(WT)与Savitzky-Golay平滑相结合的算法进行预处理,通过比较预处理后所建模型的预测效果,确定了小波变换(WT)预处理为最优光谱预处理方法,从而消除了光谱中的无用信息并提高了信噪比。再次,在WT预处理的基础上,分别采用主成分分析(PCA)法和连续投影(SPA)算法提取光谱特征波段,通过建模比较确定主成分分析(PCA)法为最优波长选择方法,以所选的16个特征波长作为模型的输入,不仅提高了模型的运行速度还可以提高模型的稳定性。最后,在经过PCA特征提取后,分别采用偏最小二乘回归(PLSR)算法和多元线性回归(MLR)算法构建TVB-N定量预测模型,通过比较两种模型的预测效果,确定了偏最小二乘回归(PLSR)模型为最优建模方法,最终确定的最优模型为基于WT-PCA-PLSR建立的模型,模型预测决定系数R^2为0.89,预测均方根误差RMSEP为3.00。综上所述,所建立的预测模型具有较高的精度,可以实现对河蟹新鲜度的快速检测,具有较好的市场应用前景。 相似文献
4.
基于典型目标反射率的近红外场景仿真 总被引:1,自引:0,他引:1
利用积分球对近红外增强相机进行了可见、近红外波段的辐射定标,并采用该相机采集了典型目标的可见、近红外图像.利用便携式地物光谱仪采集了相同目标可见、近红外波段的光谱反射率曲线,并分析了目标在可见、近红外波段的光谱反射特性.通过寻找同一天气条件、同一时间段所拍摄的典型目标近红外图像灰度值与可见光图像灰度值及典型目标可见、近红外波段反射率之间的关系,提出一种基于可见光图像及目标反射率反演近红外图像的算法.在近红外图像反演过程中考虑了大气透过率的影响,反演结果表明,本文算法可以较好地体现典型目标近红外图像的全局特征,为后续不同天气条件下近红外场景仿真的实现提供参考. 相似文献
5.
当近红外光谱信息远远大于样本量时,对光谱信息进行自动变量选择进而建立光谱与微量成分含量之间的稀疏线性模型重要且具有挑战性。针对聚苯醚生产过程中微量成分邻甲酚难以测量的问题,将变量选择方法Adaptive Elastic Net用于建立近红外光谱与邻甲酚含量之间的定量校正模型,并将其模型性能与ElasticNet方法进行对比。在变量数目远远大于样本量的情形下,ElasticNet方法虽可以实现变量选择,但由于其系数估计不具备Oracle性质,使得模型的可解释性和预测精度受到影响,而Adaptive Elastic Net方法通过对L1惩罚项施加自适应权重从而很好的解决了上述问题并提高了模型性能。为了验证Adaptive Elastic Net方法的模型性能指标,用最终被选中的自变量数目来评价模型复杂度;利用复相关系数R2来评价模型的可解释性,利用平均相对预测误差MRPE(mean relative prediction error)和预测相关系数Rp来评价模型的预测精度。Elastic Net方法建立的模型性能指标为:NSIV=529,R2=0.96, MRPE=3.22%, Rp=0.97; Adaptive Elastic Net方法的性能指标为:NSIV=139, R2=0.99, MRPE=2.00%, Rp=0.99。结果表明:Adaptive Elastic Net所建立模型的性能指标优于Elastic Net方法,可以得到更加简单且具有较强可解释性和较高预测精度的稀疏线性模型。 相似文献
6.
Rui-Fang Guo Yan Liang Xiao-Yong Gao He-Jie Zhu Sa Zhang Hong-Tao Liu 《Brazilian Journal of Physics》2014,44(6):697-702
Nanocrystalline PbS films were synthesized on p-type Si(100) wafers using chemical bath deposition. All of the PbS films are polycrystalline in nature with face -centered cubic (fcc) rock salt structure. The average crystallite size varied from 20 to 74 nm, thereby indicating nanocrystalline films with different molar ratios. The film composed of irregular particles was homogeneous and well adhered to the substrates. Increase in thiourea concentration from 0.5 to 2.0 M resulted into an increase in the lateral particle size and film thickness, while further increase in thiourea concentration caused a decrease in particle size and film thickness. The absorption edge of the films blueshifted slightly with increased molarities of lead sources, blueshifted initially, and then redshifted with increased molarities of sulfur sources at a fixed lead source molarities. The blueshift and redshift of the absorption edge were closely related to the change in the tensile stress of the PbS films subjected to. 相似文献
7.
基于近红外光漫反射谱技术的检测分析具有简单,快捷,安全等优势而被广泛应用于各行各业。应用近红外光谱分析技术实现不同煤种的快速分类,该方法可以替代费时费力费财的传统化学分析方法。同时首次将置信学习机(confidence machine)引入近红外分析中,实现了对分析结果的风险评估。采集了来自不同矿区共四种不同煤种(肥煤,焦煤,瘦煤和贫瘦煤)的199个煤样本的近红外光谱,通过机器学习的方法针对煤的近红外光谱构建了煤种分类器来实现煤种的快速分类。在近红外分析中引入了置信学习机的分析方式,结合支持向量机(SVM),构建了离线和在线的CM-SVM分类器。置信学习机是一种概率方法,使用概率(CM-SVM)来取代分类超平面(SVM)进行分类,不仅分类效果好于传统的SVM,达到了95.48%的分类率,还能同时给出每个样本分类结果的置信度,可靠度等风险信息。另外,CM-SVM通过对置信水平的设定,得到不同置信度下预测区间,该区间的预测正确率是与置信水平严格对应的,对于产品质量控制有非常重要的意义。置信学习机同时是一种在线的学习模型,新样本的不断加入会提高模型的性能,非常适合于工业现场的在线分析。在线的CM-SVM模型随着样本数的增加,预测结果的置信度有所提高,对工业现场近红外分析有重要意义。 相似文献
8.
现有的玉米种子品种鉴别方法检测时间长,费用高,不易大批量快速鉴别。提出了一种基于近红外光谱数据快速鉴别商品玉米品种的新方法。先使用傅里叶变换近红外光谱仪获得从4 000到12 000 cm-1波段范围的37个商品玉米品种籽粒的漫反射光谱数据。对原始光谱进行矢量归一化预处理以消除噪声干扰,为了找到玉米品种籽粒的光谱特征波段,提出一种基于标准差的方法,进而对寻找到的玉米籽粒特征波段光谱做主成分分析(PCA),取能反映玉米品种 99.98% 光谱信息的前10个主成分。最后使用仿生模式识别 (BPR)方法建立了37个玉米品种鉴别模型,对于每个品种的25个样本,随机挑选15个样本作为训练样本,其余10个样本作为第一测试集,其他品种共900个样本作为第二测试集。该鉴别模型对于37个玉米品种的平均正确识别率为94.3%。该方法的进一步研究有利于建立以近红外光谱为基础的物理指纹品种鉴别技术。 相似文献
9.
近红外光谱具有高维小样本的特点,变量选择是提高定量分析模型稳健性和可解释性的一种有效方法。确定独立筛选(SIS)是一种基于边际相关性的超高维数据变量选择方法,广泛用于基因微阵列数据的变量选择。SIS具有将数据维度降低至样本大小规模的能力,其降维能力与LASSO相当,在相当宽泛的近似条件下,由于具有安全筛选性质,所有重要变量被保留的概率趋于1。基于确定独立筛选偏最小二乘(SIS-SPLS)的变量选择是一种迭代式的SIS变量选择方法,首先利用SIS方法完成光谱重要变量的初选;然后根据重要变量的边际相关性大小进行逐步前向选择:建立偏最小二乘回归模型,依据贝叶斯信息准则(BIC)确定最终的变量选择结果。SIS-SPLS以逐步前向选择的方式实现对重要变量的增量式筛选,随着潜变量个数的增加及因变量残差的逐步减小,SIS-SPLS方法选择的变量个数将趋于稳定。然而仅以边际相关性对变量重要性进行评价,当光谱变量个数远大于样本数时,该方法也存在选择的变量过多、变量选择结果不够稳健等问题。为进一步提高小样本情况下变量选择的稳健性,将集成学习引入SIS-SPLS方法之中,提出了一种集成SIS-SPLS变量选择方法(Ensemble-SISPLS)。该方法首先对校正集样本进行自助重采样,对采样得到的每一个校正子集分别使用SIS-SPLS方法进行变量筛选,通过投票机制并设置频次阈值对所有校正子集的变量选择结果进行集成,选择出现频次大于给定阈值的变量并建立偏最小二乘回归模型,计算5折交叉验证均方根误差。对频次阈值和潜变量个数两个关键参数使用网格搜索法进行优选,根据子模型的交叉验证均方根误差和变量个数对子模型性能进行综合评价,以最优子模型包含的变量作为最终的变量选择结果。分别在Corn数据集和当归数据集上进行变量选择实验,比较Ensemble-SISPLS,SIS-SPLS和UVE-PLS三种变量选择方法的性能。其中当归数据集共77个样本,样本采自甘肃岷县和渭源县,使用Nicolet-6700型近红外光谱仪扫描得到所有样本的近红外光谱并对当归中的阿魏酸含量进行预测。Ensemble-SISPLS方法在Corn数据集上选择的变量个数、RMSEP和决定系数分别为22,0.000 8和0.999 8;SIS-SPLS方法在Corn数据集上选择的变量个数、RMSEP和决定系数分别为97,0.007 3和0.998 8。Ensemble-SISPLS方法在当归数据集上选择的变量个数、RMSEP和决定系数分别为24,0.018 1和0.996 3;SIS-SPLS方法在当归数据集上选择的变量个数、RMSEP和决定系数分别为38,0.022 6和0.994 3。结果表明,该方法进一步提高了变量选择结果的稳健性和预测能力。Ensemble-SISPLS变量选择方法有效结合了SIS-SPLS较强的变量选择能力和集成学习良好的泛化能力,提高了变量选择的稳健性。此外,由于在子模型的预测能力和变量个数之间进行了折中,一定程度上减少了选择变量的个数,提高了模型的可解释性。 相似文献
10.
在进出口检测检疫部门,血液制品的检验与分类是件重要且复杂的事情。对于全血样品,开放式的采集可能带来污染,且血样中的致病因子可能会对检测人员造成危害。因此急需非接触式的全血分类鉴别方法。常用流式细胞术中的光谱方法由于需要对血细胞进行采样,所以无法在非接触全血分类鉴定中采用。红外吸收光谱学是一种可用来分析样品分子结构和化学键的技术,可以在不直接接触样品的情况下对样品进行探测。为寻找一种可实现非接触式血液样品种属差异性状探测的可行光谱方法,采用近红外谱段(4 497.669~7 506.4 cm-1)对犬猫鸡三类常见动物全血样品进行了透射光谱测量。结果发现所测样品均在5 184~5 215 cm-1之间有个明显的吸收峰,在7 000 cm-1附近有个较平缓的吸收峰,且同种动物个体之间的透射光谱分布相似,只在整体透射率上有些差别。采用相关系数比较三类动物全血样品近红外透射光谱的区别,计算得出同种动物不同个体光谱曲线的相关系数均大于0.99,而不同种动物光谱曲线的相关系数在0.509 48~0.916 13之间。其中鸡与猫光谱曲线的相关系数在0.857 23~0.912 44之间;鸡与犬光谱曲线的相关系数在0.509 48~0.664 82之间;猫与犬光谱曲线的相关系数在0.872 75~0.916 13之间。犬猫同属哺乳纲,两者全血的近红外透射光谱相关系数比犬鸡或猫鸡非同纲动物的大,即光谱曲线的相似度更高。研究结果表明近红外透射光谱是一种非接触式动物全血鉴别的可行方法。 相似文献
11.
黑龙江省是我国最大的粳稻产区和商品粮生产基地。水稻种植过程中,选择合适的水稻品种是实现高产的关键环节。在农业生产中,水稻品种的选择受多方面因素影响,一般说来,同一积温带所种植的不同水稻品种在外观上差别不大,甚至没有差别,很难通过肉眼观察进行准确区分。为了快速鉴别肉眼不便区分的不同类别粳稻种子,提出了一种基于近红外光谱技术的粳稻品种快速无损鉴别方法。以黑龙江垦区大量种植的3种不同品种的粳稻种子(垦粳5号、垦粳6号和绥粳4号)作为研究对象,每个品种选取40个样本,其中30个样本做为建模集,10个样本作为预测集,扫描获取全部120个样本的近红外光谱数据。对原始光谱数据(11 520~4 000 cm-1)两端进行裁剪,选取吸光度较强的8 250~5 779cm-1范围内的光谱数据进行研究。首先建立参照模型,即直接对光谱数据建立BP模型1, 同时光谱数据经过一阶导数和Savitzky-Golay平滑预处理后建立BP模型2。模型1的分类正确率为93.3%,预测集均方根误差RMSEP=0.232 8,迭代时间t=3 882.9 s。模型2的分类正确率为100%,RMSEP=0.070 6,迭代时间t=954.5 s。比较两种模型的评价参数RMSEP发现FD+SG预处理可以提高模型的预测能力,但是由于两种模型未进行降维处理,数据量过大,模型的输入节点过多,迭代时间太长,不利于实际应用。因此利用小波变换多分辨率的特点对数据进行降维处理,采用预测集残差平方和Press值作为评价指标,在多个小波类别和参数中选取分解尺度为5的sym2(symlet2)小波对光谱数据进行压缩和降维处理,将光谱数据由601维降到21维。以小波变换结果作为神经网络输入,建立模型3,并与模型1比较,模型3的分类正确率为93.3%, RMSEP=0.225 0, 迭代时间t缩短至198.9 s,比较结果显示小波降维可以减少神经网络的输入,简化神经网络的结构,从而提高迭代速度,但对提高模型的预测能力效果不明显。上述三种模型比较结果表明,FD+SG预处理可以提高模型的预测能力,小波降维可以提高模型的迭代速度,综合上述三种模型的比较结果分析,最终建立“FD+SG+小波降维”的21输入、15个隐层、3个输出的神经网络鉴别模型4,其分类正确率达100%,RMSEP=0.029 3, 迭代时间为98.8 s,表明模型4能够完全实现对三种不同水稻品种的快速、准确、无损鉴别。因此,所提出的基于近红外光谱的小波降维和反向传播人工神经网络鉴别模型的方法完全可以用于粳稻种子的快速无损鉴别,同时也为其他农作物种子的快速鉴别提供了参考。 相似文献
12.
中国是马铃薯生产和消费大国,伴随马铃薯主粮化战略推进,马铃薯对中国农业结构和消费者饮食结构的影响与日俱增。环腐病是制约马铃薯产业发展的常见病害,对种薯会造成死苗死株,对加工原料会降低加工效率和成品质量,严重可达30%~60%。传统检测马铃薯病害的主要方法是目测、机器视觉以及高光谱成像等方法,目测或机器视觉方式鉴别环腐病需要对样品进行破坏;高光谱成像技术成本高昂,存在一定的应用局限性。因环腐病会造成整薯内部品质变化,利用近红外光谱技术探测整薯内部品质变化,从而将环腐病马铃薯从健康薯中区别开来,具有可行性和实用价值。创新地尝试利用近红外光谱结合SIMCA模式方法来区分马铃薯环腐病及健康薯。研究结果表明,基于主成分分析的SIMCA模式识别能有效判别马铃薯环腐病样品,模型校正集中环腐病和健康薯的识别率、拒绝率均为100%;模型验证集中环腐病的识别率、拒绝率分别为99.00%和100%,健康薯的识别率、拒绝率分别为94.12%和100%,所建模型精度较高。利用独立的18个样品进行模型外部验证,环腐病样品识别率为87.50%,健康薯识别率为80.00%,均没有错判。表明所建SIMCA二值识别模型效果良好,可满足实际应用,但模型精度需进一步提高。马铃薯环腐病发病部位接近表皮0.5 cm左右,近红外光谱对马铃薯样品有一定的透射和漫反射。可考虑采集马铃薯接近表皮部分的果肉组织内部光谱信息,结合马铃薯环腐病的发病机理及近红外漫反射光谱的特性,利用近红外识别模型进行环腐病判别,具有一定的创新性和应用性。 相似文献
13.
针对近红外光谱波长选择问题,在团队进步算法(TPA)的基础上,提出一种改进团队进步算法(iTPA)的波长变量选择方法,将分子光谱的波段按照与其相应的理化值建模得到的评价值函数大小降序排列,顺序分为精英组、普通组和垃圾回收组。当新生波段选择学习行为时,若其产生于普通组,则需要向精英组样板的方向调节;若其产生于精英组,则需要改进其更新方向,向垃圾回收组样板的反方向调节。垃圾回收组成员的评价值不像精英组和普通组随着更新的过程一直上升,而是一直处于极低的状态,为产生于精英组的新生波段在学习时提供一个准确的更新方向,从而提升算法的全局寻优能力。通过不断的迭代更新,逐步提升整体评价值,最终选取评价值最高的波段作为筛选波段。该算法对玉米的淀粉和蛋白质含量数据集进行了实验测试,并与TPA、遗传算法(GA)、主成分分析(PCA)以及全谱方法进行了对比。实验结果表明,所提算法能够找出全谱范围内波长的最优组合,并且可以解释各含量的化学特性。玉米淀粉数据集运行的效果相比于全光谱,变量个数从700个减少到17.55个左右(50次试验求平均),模型的RMSEC从0.335 7降到0.260 9,校正集预测精度提升了22.3%,模型的RMSEP从0.391 4下降到0.334 4左右,预测集预测精度提升了14.6%;在玉米蛋白质数据集运行的效果相比于全光谱,变量个数从700个减少到19.6个左右(50次试验求平均),模型的RMSEC从0.147 4降到0.101 9,校正集预测精度提升了30.1%,模型的RMSEP从0.178 9下降到0.117 7,预测集预测精度提升了34.2%。 相似文献
14.
用遗传区间偏最小二乘法建立苹果糖度近红外光谱模型 总被引:4,自引:2,他引:4
为了简化苹果糖度预测模型和提高模型的精度,用遗传区间偏最小二乘法(GA-iPLS)建立苹果近红外光谱预测模型。应用结果表明,整个光谱划分为40个子区间, GA-iPLS选择其中的第4,6,8,11,18号共5个子区间联合建立苹果糖度模型。遗传区间偏最小二乘法所建的模型,其校正时的相关系数rc和交互验证均方根误差RMSECV分别为0.962和0.334 6,预测时的相关系数rp和预测均方根误差RMSEP分别为0.932和0.384 2。与全光谱模型相比,该方法建立的模型不论对校正集还是预测集,模型的预测能力都提高了许多,且模型得到了很大的简化:其实际采用的波数点个数比全光谱模型采用的波数点个数大大减少,主因子数也比全光谱少,由此建立的模型更加简洁、数据运算量也更少。 相似文献
15.
近红外光谱建模样本选择方法研究 总被引:1,自引:0,他引:1
针对小麦品种多分类问题,使用近红外光谱进行定性分析。建模样本增加能够使模型包含信息增多,但同时也会导致信息冗余,增加建模时间和存储空间,所以需要通过样本选择降低数据量。如果盲目选择必然会使信息丢失,模型效果将大打折扣,因此,在传统选择方法基础上,提出k近邻-密度样本选择方法。使用多天采集的小麦种子近红外漫反射光谱,在对其原始光谱进行预处理和特征提取后,分别使用随机抽样、k近邻和k近邻-密度三种方法进行建模样本选择,然后建立仿生模式识别模型和改进的仿生模式识别模型。实验结果显示,在建立的仿生模式识别模型中,使用k近邻-密度样本选择方法的模型识别效果优于另两种方法,且建模样本量大大降低;而在改进的仿生模式识别模型中,使用k近邻-密度样本选择方法识别效果明显优于随机抽样,略好于k近邻方法,但使用k近邻-密度方法所选择的样本数量远少于k近邻方法。结果证明k近邻-密度样本选择方法不仅能够大大降低建模样本量,而且保证了模型质量,对解决小麦品种多分类问题有明显效果。 相似文献
16.
基于NIRS技术的食用醋品牌溯源研究 总被引:2,自引:0,他引:2
以四种品牌152组食用醋样品为研究对象,采用漫反射与透射两种近红外光谱采集模式分别进行光谱数据采集,并以此建立了食用醋品牌溯源模型,重点考察光谱采集模式、光谱预处理方法等对溯源模型精度的影响。结果表明,选取114组样品为训练集,原始光谱数据经过多元散射校正、二阶求导预处理后,采用偏最小二乘判别分析法(PLS1-DA)建立的食用醋NIRS品牌溯源模型,对38组测试集样品进行预测,透射光谱模型的决定系数(R2)、校准均方根误差(root-mean-square error of calibration, RMSEC)、预测均方根误差(root-mean-square error of prediction, RMSEP)分别为0.92,0.113,0.127,正确识别率为76.32%;漫反射光谱模型R2,RMSEC,RMSEP分别为0.97,0.102,0.119,正确识别率为86.84%。由此说明,近红外光谱结合PLS1-DA可以用来建立食用醋品牌溯源模型,且漫反射光谱模型预测效果更好。 相似文献
17.
基于小波变换的木材近红外光谱去噪研究 总被引:3,自引:0,他引:3
木材近红外光谱常常被一系列噪声所污染,影响光谱分析结果。为了提高近红外光谱分析精度,需要对光谱数据进行预处理。光谱导数可以消除光谱背景干扰和基线漂移等因素影响,提高光谱分辨率,但导数光谱在增强信号的同时,也使信号噪声得到增强。应用小波变换对杉木木材近红外一阶导数光谱进行去噪研究,分别采用9点平滑法、25点平滑法、非线性小波硬阈值和软阈值法、9点平滑+小波变换法和25点平滑+小波变换法对光谱数据进行去噪研究。结果显示, 小波变换能够有效去除导数光谱中的噪声信号,保留光谱中的有效信息,提高光谱信噪比,提高光谱的分析能力,在木材近红外光谱分析中具有很好的应用前景。 相似文献
18.
基于近红外光谱的橄榄油品质鉴别方法研究 总被引:1,自引:0,他引:1
目前市面上销售的橄榄油主要分为特级初榨橄榄油和普通初榨橄榄油两类,为了鉴别两种不同品质的橄榄油,提出了一种应用siPLS-IRIV-PCA算法的橄榄油品质鉴别的新方法。基于橄榄油的近红外光谱数据,应用联合区间偏最小二乘法(siPLS)对橄榄油的近红外光谱进行了波长区间优选,使用交叉验证均方根误差(RMSECV)评估模型的性能并选择最优波长区间,通过迭代保留信息变量(IRIV)算法从最优波长区间中选择特征波长,根据选择的特征波长构建主成分分析(PCA)模型。对90组特级初榨橄榄油和90组普通橄榄油样本进行了判别鉴定。PCA将1 427个波长变量作为输入变量,前两个主成分贡献率为51.891 8%和26.473 2%;siPLS-PCA将408个波长变量作为输入变量,前两个主成分贡献率为56.039 1%和36.235 5%;siPLS-IRIV-PCA将6个波长变量作为输入变量,前两个主成分贡献率为66.347 6%和32.304 3%。结果表明,与PCA和siPLS-PCA鉴别方法相比,siPLS-IRIV-PCA具有最佳的鉴别性能。 相似文献
19.
子宫内膜癌是一种常见的妇科癌症。实验将Logistic回归作为一种建模方法引入到子宫内膜癌分类诊断模型中。77个样本通过主成分判别分析和支持向量机判别分析进行降维,应用拉丁配分方法选择训练集和测试集并确定Logistic回归模型参数。结果表明,Logistic回归模型不仅能够对样本进行正确的分类,而且能将样本的分类归属趋势与临床诊断结果很好的一致。主成分判别分析结合Logistic回归有望发展为一种近红外光谱检测癌症组织的新方法。 相似文献
20.
莲子是我国重要的药食同源食物,与莲子营养价值相当、便于食用的莲子粉备受消费者青睐。为保证莲子粉的品质,利用近红外光谱(NIRs)技术对掺杂小麦粉、玉米粉和地瓜粉的莲子粉进行鉴定,在样品类别已知下利用支持向量机(SVM)、最小二乘支持向量机(LS-SVM)、偏最小二乘法-判别分析(PLS-DA)模型进行判别,在样品类别未知下基于聚类算法进行判别。同时,对莲子粉中水分含量利用偏最小二乘(PLS)回归进行定量分析。结果表明,LS-SVM模型对纯莲子粉样品与掺入小麦粉、玉米粉和地瓜粉的莲子粉样品的判别率达到100%;基于聚类算法能够有效识别掺入5%地瓜粉、小麦粉和玉米粉的莲子粉样品;PLS模型对莲子粉中水分含量预测综合性能良好,其中经过标准化预处理得到模型效果最佳,其R2c,RMSEC,R2p和RMSEP分别达到0.973 2,0.111 5,0.969 5和0.118 9。近红外光谱技术能为隐蔽的莲子粉掺杂的鉴别以及莲子粉中水分含量监控提供一种快速、准确、无损检测的分析方法,为保证高档次莲子品质提供一种有益的思路。 相似文献