共查询到20条相似文献,搜索用时 0 毫秒
1.
《Communications in Nonlinear Science & Numerical Simulation》2010,15(4):1036-1047
This paper brings attention to hyperchaos anti-synchronization between two identical and different hyperchaotic systems by using adaptive control. The sufficient conditions for achieving the anti-synchronization of two hyperchaotic systems are derived based on Lyapunov stability theory. An adaptive control law and a parameter update rule for unknown parameters are introduced such that the hyperchaotic Chen system is controlled to be the hyperchaotic Lü system. Theoretical analysis and numerical simulations are shown to verify the results. 相似文献
2.
Some dynamical behaviors are studied in the fractional order hyperchaotic Chen system which shows hyperchaos with order less than 4. The analytical conditions for achieving synchronization in this system via linear control are investigated theoretically by using the Laplace transform theory. Routh–Hurwitz conditions and numerical simulations are used to show the agreement between the theoretical and numerical results. To the best of our knowledge this is the first example of a hyperchaotic system synchronizable just in the fractional order case, using a specific choice of controllers. 相似文献
3.
Muhammad Rehan 《Applied Mathematical Modelling》2013,37(10-11):6829-6837
This paper addresses the design of simple state feedback controllers for synchronization and anti-synchronization of chaotic oscillators under input saturation and disturbance. By employing sector condition, linear matrix inequality (LMI)-based sufficient conditions are derived to design (global or local) controllers for chaos synchronization. The proposed local synchronization strategy guarantees a region of stability in terms of difference between states of the master–slave systems. This region of stability can be enlarged by means of an LMI-based optimization algorithm, through which asymptotic synchronization of chaotic oscillators can be ensured for a large difference in their initial conditions. Further, a novel LMI-based robust control strategy is developed, for local synchronization of input-constrained chaotic oscillators, by providing an upper bound on synchronization error in terms of disturbance and initial conditions of chaotic systems. Moreover, the proposed robust state feedback control methodology is modified to provide an inaugural treatment for robust anti-synchronization of chaotic systems under input saturation and disturbance. The results of the proposed methodologies are verified through numerical simulations for synchronization and anti-synchronization of the master–slave chaotic Chua’s circuits under input saturation. 相似文献
4.
《Communications in Nonlinear Science & Numerical Simulation》2011,16(1):395-401
A novel robust control scheme is proposed to realize anti-synchronization of two different hyperchaotic systems with external uncertainties. By introducing a compensator, the novel robust control scheme is developed based on nonlinear control and adaptive control, which can eliminate the influence of uncertainties effectively and achieve adaptive anti-synchronization of the two different hyperchaotic systems globally and asymptotically with an arbitrarily small error bound. The adaptive laws of the unknown parameters are given, and the sufficient conditions are derived as well. Finally, numerical simulations are provided to verify the effectiveness and robustness of the proposed control scheme. 相似文献
5.
Wafaa Jawaada M.S.M. Noorani M. Mossa Al-sawalha 《Nonlinear Analysis: Real World Applications》2012,13(5):2403-2413
In this paper, we demonstrate that anti-synchronization can coexist in two different hyperchaotic systems with terms of parametric uncertainty and external disturbances using the robust active sliding mode control method. By using rigorous mathematical theory, the sufficient condition is drawn for the stability of error dynamics based on the Lyapunov stability theory, where the controllers are designed by using the sum of the relevant variables in hyperchaotic systems. Numerical results are presented to justify the theoretical analysis. 相似文献
6.
《Communications in Nonlinear Science & Numerical Simulation》2010,15(7):1910-1920
In this paper, synchronization of hyperchaotic system is discussed. Based on the stability theory in the cascade system, a simple linear feedback law is presented to realize synchronization of hyperchaotic systems. Simulation results are given to illustrate the effectiveness of the proposed method. 相似文献
7.
This paper addresses the synchronization problem of two different electronic circuits by using nonlinear control function. This technique is applied to achieve synchronization for the stable van der Pol oscillator and Chen chaotic dynamical system. Numerical simulations results are given to demonstrate the effectiveness of the proposed control method. 相似文献
8.
This letter presents chaos synchronization problem of two different hyperchaotic systems when the parameters of drive and response systems are fully unknown or uncertain. Based on Lyapunov stability theory, an adaptive control law and a parameter update rule for unknown parameters are derived such that two different high dimensional chaotic systems are to be synchronized. Hyperchaotic Chen system and Second-harmonic generation (SHG) system are taken as an illustrative example to show the effectiveness of the proposed method. 相似文献
9.
《Nonlinear Analysis: Real World Applications》2008,9(5):2253-2261
This study demonstrates that synchronization and anti-synchronization can coexist in two-degree-of-freedom dissipative gyroscope system with input nonlinearity. Because of the nonlinear terms of the gyroscope system, the system exhibits complex motions containing regular and chaotic motions. Using the variable structure control technique, a novel control law is established which guarantees the hybrid projective synchronization including synchronization, anti-synchronization and projective synchronization even when the control input nonlinearity is present. By Lyapunov stability theory with control terms, two suitable sliding surfaces are proposed to ensure the stability of the controlled closed-loop system in sliding mode, and two variable structure controllers (VSC) are designed to guarantee the hitting of the sliding surfaces. Numerical simulations are presented to verify the proposed synchronization approach. 相似文献
10.
In this paper, synchronization of two hyperchaotic oscillators via a single variable’s unidirectional coupling is studied. First, the synchronizability of the coupled hyperchaotic oscillators is proved mathematically. Then, the convergence speed of this synchronization scheme is analyzed. In order to speed up the response with a relatively large coupling strength, two kinds of chaotic coupling synchronization schemes are proposed. In terms of numerical simulations and the numerical calculation of the largest conditional Lyapunov exponent, it is shown that in a given range of coupling strengths, chaotic-coupling synchronization is quicker than the typical continuous-coupling synchronization. Furthermore, A circuit realization based on the chaotic synchronization scheme is designed and Pspice circuit simulation validates the simulated hyperchaos synchronization mechanism. 相似文献
11.
Congxu Zhu 《Applied mathematics and computation》2010,216(1):276-6124
The control and hybrid projective synchronization (HPS) strategies for a novel hyperchaotic system are investigated. Firstly, the novel hyperchaotic system is controlled to the unsteady equilibrium point or limit cycle via only one scalar controller which includes two state variables. Secondly, based on Lyapunov’s direct method HPS between two novel hyperchaotic systems is studied. A new nonlinear feedback vector controller is designed to guarantee HPS, which can be simplified ulteriorly into a single scalar controller to achieve complete synchronization between two novel hyperchaotic systems. Finally, numerical simulations are given to verify the effectiveness of these strategies. The proposed methods have certain significances for reducing the cost and complexity for controller implementation. 相似文献
12.
In this paper, two kinds of synchronization schemes for a new hyperchaotic system are presented. Firstly, on the basis of stability criterion of linear system, synchronization is achieved with the help of the active control theory. Secondly, a nonlinear controller is designed according to Lyapunov stability theory to assure that synchronization can be achieved. Furthermore, an adaptive control approach for synchronization of uncertain hyperchaotic systems is proposed. Finally numerical simulations are provided to show the effectiveness and feasibility of the developed methods. 相似文献
13.
Yonglu Shu Fuchen Zhang Chunlai Mu 《Mathematical Methods in the Applied Sciences》2015,38(15):3155-3162
Currently, chaotic systems and chaos‐based applications are commonly used in the engineering fields. One of the main structures used in these applications is chaotic control and synchronization. In this paper, the dynamical behaviors of a new hyperchaotic system are considered. Based on Lyapunov Theorem with differential and integral inequalities, the global exponential attractive sets and positively invariant sets are obtained. Furthermore, the rate of the trajectories is also obtained. The global exponential attractive sets of the system obtained in this paper also offer theoretical support to study chaotic control, chaotic synchronization for this system. Computer simulation results show that the proposed method is effective. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
14.
Antonio Lor?´a 《Chaos, solitons, and fractals》2011,44(9):702-709
We discuss the cascaded-based controlled synchronization method for hyperchaotic systems. The control approach is based on analysis tools for cascaded time-varying systems. That is, the closed-loop system takes the form of two subsystems which are interconnected in a manner that the state of one system enters into another but without feedback loop. The advantage of such construction is that the controller is largely simplified relative to other design methods such as backstepping. We apply the method to Chen’s hyperchaotic system and show that global synchronization is achieved via linear control. Also, we assume that only three instead of four control inputs are available. The method is tested in numerical simulations. 相似文献
15.
《Communications in Nonlinear Science & Numerical Simulation》2011,16(4):1998-2005
This paper reports a four-dimension (4D) fast-slow hyperchaotic system with the structure of two time scales by adding a slow state variable w into a three-dimension (3D) chaotic dynamical system, studies the stability and Hopf bifurcation of origin point. Furthermore, based on the fast-slow dynamical bifurcation analysis and the phase planes analysis, different bursting phenomena, symmetric fold/fold bursting, symmetric sub-Hopf/sub-Hopf bursting and chaotic bursting, as well as chaotic and periodic spiking, are observed in the fast-slow hyperchaotic system. Numerical simulations are presented to show these results. 相似文献
16.
17.
研究了Chen提出的一个新的混沌系统的混沌同步问题,利用非线性控制方法设计了三种混沌同步控制器,并用李雅普诺夫方法证明了在混沌控制器作用下,驱动、响应混沌系统可以实现全局同步.数值仿真结果表明,所设计的三种混沌控制器都能有效的实现混沌同步,并且具有很强的鲁棒性. 相似文献
18.
In this work, we discuss the stability conditions for a nonlinear fractional-order hyperchaotic system. The fractional-order hyperchaotic Novel and Chen systems are introduced. The existence and uniqueness of solutions for two classes of fractional-order hyperchaotic Novel and Chen systems are investigated. On the basis of the stability conditions for nonlinear fractional-order hyperchaotic systems, we study synchronization between the proposed systems by using a new nonlinear control technique. The states of the fractional-order hyperchaotic Novel system are used to control the states of the fractional-order hyperchaotic Chen system. Numerical simulations are used to show the effectiveness of the proposed synchronization scheme. 相似文献
19.
This paper addresses the synchronization problem of two Lü hyperchaotic dynamical systems in the presence of unknown system parameters. Based on Lyapunov stability theory an adaptive control law is derived to make the states of two identical Lü hyperchaotic systems with unknown system parameters asymptotically synchronized. Numerical simulations are presented to show the effectiveness of the proposed chaos synchronization schemes. 相似文献
20.
《Communications in Nonlinear Science & Numerical Simulation》2010,15(12):3754-3762
This paper discusses the synchronization and anti-synchronization of new uncertain fractional-order unified chaotic systems (UFOUCS). Based on the idea of active control, a novel active pinning control strategy is presented, which only needs a state of new UFOUCS. The proposed controller can achieve synchronization between a response system and a drive system, and ensure the synchronized robust stability of new UFOUCS. Numerical simulations of new UFOUCS show that the controller can make fractional-order unified chaotic systems (FOUCS) achieve synchronization or anti-synchronization in a quite short period and both are of good robust stability. 相似文献