首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
The effect of electric and magnetic fields on the sandwich structure Pt/hydrogenated amorphous silicon (a‐Si:H)/stearic acid monolayer/Langmuir–Blodgett film of Ag/Co nanoparticles encapsulated in an organic envelope is studied. This structure is used as a working electrode in an electrochemical cell filled with NaCl solution (1 mM ) and equipped with an Ag/AgCl reference electrode. Reversible changes in voltammograms are observed due to treatments (negative or positive bias voltage and simultaneous laser irradiation) applied to the designed structure before measurements. As an explanation of the observed phenomena we suggest that both the Co‐up and Ag‐up (on the a‐Si:H surface) orientation orderings of nanoparticle Ag/Co cores are repeatedly reached. The role of the photovoltaic material (a‐Si:H) in the observed behavior is explained. Voltammetric measurements with an applied magnetic field support our idea about the orientation ordering of nanoparticle cores.  相似文献   

2.
Large‐area nanostructured Ag/Ag‐tetracyanoquinodimethane (TCNQ) Schottky junctions are fabricated electrochemically on a mesoporous polyethylene terephthalate (PET) membrane‐supported water/1, 2‐dichloroethane (DCE) interface. When the interface is polarized, Ag+ ions transfer across the PET membrane from the aqueous phase and are reduced to form metallic Ag on the PET membrane, which reacts further with tetracyanoquinodimethane (TCNQ) in the DCE phase to form nanostructured Ag/AgTCNQ Schottky junctions. Once the mesoporous membrane is blocked by metallic Ag, a bipolar mechanism is proposed to explain the successive growth of AgTCNQ nanorods and Ag film on each side of the PET membrane. Due to the well‐formed nanostructure of Ag/AgTCNQ Schottky junctions, the direct electrochemical behavior is observed, which is essential to explain the physicochemical mechanism of its electric performance. Moreover, the composite PET membrane with nanostructured Ag/AgTCNQ Schottky junctions is tailorable and can be assembled directly into electric devices without any pretreatment.  相似文献   

3.
We present a simple in situ method to fabricate silver (Ag) nanoparticle arrays in a layer-by-layer (LBL) assembled hyaluronan (HA)/poly(dimethyldiallylammonium chloride) (PDDA) multilayer structure, in which the LBL multilayered film is constructed by electrostatic attraction between positively charged PDDA and negatively charged HA, followed by in situ synthesis of embedded Ag nanoparticle arrays in the LBL "nanoreactors," where the abundant negatively charged carboxyl groups of HA bind and further reduce Ag(+) ions under UV-irradiating. The arrays morphology is highly dependent on the number of bilayers, and the surface density of nanoparticles in the arrays can be simply tailored by the number of irradiation/drying cycles during fabrication. The embedded Ag nanoparticle arrays possess good stability for localized surface plasmon resonance (SPR) absorption spectrum-based biosensors and superior antimicrobial capability. These render great potentials for the films in both biosensing and antimicrobial applications.  相似文献   

4.
This article reports the designed preparation of two different kinds of novel porous metal nanostructured films, namely, an ordered macroporous Au/Ag nanostructured film and an ordered hollow Au/Ag nanostructured film. Different from previous reports, the presently proposed method can be conveniently used to control film structures by simply varying the experimental conditions. The morphology of these films has been characterized by scanning electron microscopy (SEM), and their performance as surface-enhanced Raman scattering (SERS) substrates has been evaluated by using rhodamine 6G (R6G) as a probe molecule. We show that such porous nanostructured films consisting of larger interconnected aggregates are highly desirable as SERS substrates in terms of high Raman intensity enhancement, excellent stability, and reproducibility. The interconnected nanostructured aggregate, long-range ordering porosity, and nanoscale roughness are important factors responsible for this large SERS enhancement ability.  相似文献   

5.
Fe2(CO)6(μ-S2) was used as a single source precursor in attempt to produce FeS film via MOCVD. Pyrolysis of Fe2(CO)6(μ-S2) at temperature below 500℃ produced Fe1-xS or Fe7S8 powder as indicated by its powder X-ray spectra. At 750 ℃, polycrystalline FeS powder was obtained. In film deposition, polycrystalline Fe1-xS or Fe7Ss films were obtained on Si(100) and Ag/Si(100) substrates below 500 ℃. SEM micrographs showed the film on Si(100) substrate containing whisker like grains. However, pillar like grains were obtained on Ag/Si(100) substrate.Deposition rates are also different for different substrates as evaluated by the thickness of the films, which were obtained by SEM micrographs of the cross section of the films. At 750℃, similar polycrystalline Fe1-xS or Fe7S8 film was obtained.  相似文献   

6.
After over 30 years of development, surface-enhanced Raman spectroscopy (SERS) is now facing a very important stage in its history. The explosive development of nanoscience and nanotechnology has assisted the rapid development of SERS, especially during the last 5 years. Further development of surface-enhanced Raman spectroscopy is mainly limited by the reproducible preparation of clean and highly surface enhanced Raman scattering (SERS) active substrates. This review deals with some substrate-related issues. Various methods will be introduced for preparing SERS substrates of Ag and Au for analytical purposes, from SERS substrates prepared by electrochemical or vacuum methods, to well-dispersed Au or Ag nanoparticle sols, to nanoparticle thin film substrates, and finally to ordered nanostructured substrates. Emphasis is placed on the analysis of the advantages and weaknesses of different methods in preparing SERS substrates. Closely related to the application of SERS in the analysis of trace sample and unknown systems, the existing cleaning methods for SERS substrates are analyzed and a combined chemical adsorption and electrochemical oxidation method is proposed to eliminate the interference of contaminants. A defocusing method is proposed to deal with the laser-induced sample decomposition problem frequently met in SERS measurement to obtain strong signals. The existing methods to estimate the surface enhancement factor, a criterion to characterize the SERS activity of a substrate, are analyzed and some guidelines are proposed to obtain the correct enhancement factor.  相似文献   

7.
Ag nanoparticle films (simplified as nanofilms hereafter) on Si for electrochemical ATR surface enhanced IR absorption spectroscopy (ATR-SEIRAS) have been successfully fabricated by using chemical deposition, which incorporates initial embedding of Ag seeds on the reflecting plane of an ATR Si prism and subsequent chemical plating of conductive and SEIRA-active Ag nanofilms. Two alternative methods for embedding initial Ag seeds have been developed: one is based on self-assembly of Ag colloids on an aminosilanized Si surface, whereas the other the reduction of Ag+ in a HF-containing solution. A modified silver-mirror reaction was employed for further growth of Ag seeds into Ag nanofilm electrodes with a theoretically average thickness of 40-50 nm. Both Ag seeds and as-deposited Ag nanofilms display island structure morphologies facilitating SEIRA, as revealed by AFM imaging. The cyclic voltammetric feature of the as-prepared Ag nanofilm electrodes is close to that of a polycrystalline bulk Ag electrode. With thiocyanate as a surface probe, enhancement factors of ca. 50-80 were estimated for the as-deposited Ag nanofilms as compared to a mechanically polished Ag electrode in the conventional IRAS after reasonable calibration of surface roughness factor, incident angles, surface coverage, and polarization states. As a preliminary example for extended application, the pyridine adsorption configuration at an as-deposited Ag electrode was re-examined by ATR-SEIRAS. The results revealed that pyridine molecules are bound via N end to the Ag electrode with its ring plane perpendicular or slightly tilted to the local surface without rotating its C2 axis about the surface normal, consistent with the conclusion drawn by SERS in the literature.  相似文献   

8.
Ag/WO3纳米复合膜的制备及其电致变色性质和器件的研究   总被引:1,自引:0,他引:1  
庞月红  黎小宇  赵婷  施国跃  金利通 《化学学报》2008,66(21):2360-2364
通过真空镀膜方法制备的纳米Ag薄膜均匀致密, 表面光滑. 然后通过电化学方法在Ag纳米薄膜上沉积一层三氧化钨(WO3), 制备纳米Ag/WO3复合膜. 并在此基础上构筑五层式玻璃/ITO/纳米Ag-WO3复合膜/固态电解质/聚(3-甲基噻吩)/ITO/玻璃电致变色器件. 实验结果表明, 与传统的WO3膜相比, 纳米Ag/WO3复合膜具有更好的电化学活性、更高的对比度、更短的响应时间, 以及更好的稳定性. 由该复合膜组装的电致变色器件工艺简单, 电致变色性能良好.  相似文献   

9.
Electroless gold island thin films are formed by galvanic replacement of silver reduced onto a tin-sensitized silica surface. A novel approach to create nanoparticle ensembles with tunable particle dimensions, densities, and distributions by thermal transformation of these electroless gold island thin films is presented. Deposition time is adjusted to produce monomodal ensembles of nanoparticles from 9.5 +/- 4.0 to 266 +/- 22 nm at densities from 2.6 x 1011 to 4.3 x 108 particles cm-2. Scanning electron microscopy and atomic force microscopy reveal electroless gold island film structures as well as nanoparticle dimensions, densities, and distributions obtained by watershed analysis. Transmission UV-vis spectroscopy reveals photoluminescent features that suggest ultrathin EL films may be smoother than sputtered Au films. X-ray diffraction shows Au films have predominantly (111) orientation.  相似文献   

10.
A novel method for the preparation of thin films of Ag nanoparticles is reported. Using mercaptoacetic acid as the stabilizing agent, AgI nanoparticles were prepared in aqueous solution. And based on electrostatic interactions, the thiol-passivated AgI nanoparticles were assembled in a self-assembled film by alternative deposition with a cationic polyelectrolyte. Then the AgI nanoparticles in the composite film were reduced by NaBH(4), which resulted in the formation of a thin film of Ag nanoparticles. UV-visible spectra and X-ray photoelectron spectroscopy data confirmed the transformation from AgI to Ag. Atomic force microscopy (AFM) showed that the formed Ag nanoparticles distributed on the film homogeneously. Surface-enhanced Raman spectroscopy (SERS) measurement indicated that the prepared thin films could be used as effective SERS substrates. The reduction process was also carried out by UV light at selective surface regions, which resulted in the formation of patterned nanoparticle arrays.  相似文献   

11.
Kinetics and Catalysis - This review describes the regularities of the synthesis of nanostructured carbon materials (NCMs) based on the pyrolysis of methane on the surface of conductive materials...  相似文献   

12.
Femtosecond laser was employed to fabricate nanostructured Ag surface for surface-enhanced Raman scattering (SERS) application. The prepared nanostructured Ag surface was characterized by field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The FESEM images demonstrate the formation of nanostructure-covered femtosecond laser-induced periodic surface structure, also termed as ripples, on the Ag surface. The AFM images indicate that the surface roughness of the produced nanostructured Ag substrate is larger than the untreated Ag substrate. The XRD and XPS of the nanostructured Ag surface fabricated by femtosecond laser show a face centered cubic phase of metallic Ag and no impurities of Ag oxide species. The application of the produced nanostructured Ag surface in SERS was investigated by using rhodamine 6G (R6G) as a reference chemical. The SERS intensity of R6G in aqueous solution at the prepared nanostructured Ag surface is 15 times greater than that of an untreated Ag substrate. The Raman intensities vary linearly with the concentrations of R6G in the range of 10(-8)-10(-4)M. The present methodology demonstrates that the nanostructured Ag surface fabricated by femtosecond laser is potential for qualification and quantification of low concentration molecules.  相似文献   

13.
In situ surface enhanced infrared absorption spectroscopy (SEIRAS) with an attenuated total reflection (ATR) configuration has been used to monitor the adsorption kinetics of bovine hemoglobin (BHb) on a Au nanoparticle (NP) film. The IR absorbance for BHb molecules on a gold nanoparticle film deposited on a Si hemispherical optical window is about 58 times higher than that on a bare Si optical window and the detection sensitivity has been improved by 3 orders of magnitude. From the IR signal as a function of adsorption time, the adsorption kinetics and thermodynamics can be explored in situ. It is found that both the electrostatic interaction and the coordination bonds between BHb residues and Au NP film surface affect the adsorption kinetics. The maximum adsorption can be obtained in solution pH 7.0 (close to the isoelectric point of the protein) due to the electrostatic interaction among proteins. In addition, the isotherm of BHb adsorption follows well the Freundlich adsorption model.  相似文献   

14.
The surface photochemistry of NO(2) on ultrathin Ag(111) films (5-60 nm) on Si(100) substrates has been studied. NO(2), forming N(2)O(4) on the surface, dissociates to release NO and NO(2) into the gas phase with translational energies exceeding the equivalent of the sample temperature. An increase of the photodesorption cross section is observed for 266 nm light when the film thickness is decreased below 30 nm despite the fact that the optical absorptivity decreases. For 4.4 nm film thickness this increase is about threefold. The data are consistent with a similar effect for 355 nm light. The reduced film thickness has no significant influence on the average translation energy of the desorbing molecules or the branching into the different channels. The increased photodesorption cross section is interpreted to result from photon absorption in the Si substrate producing electrons with no or little momenta parallel to the surface at energies where this is not allowed in Ag. It is suggested that these electrons penetrate through the Ag film despite the gap in the surface projected band structure.  相似文献   

15.
The composite film of nanometer AgO2/silane coupling reagent aminopropyltriethoxy-silane (CH3O)3Si(CH2)3NH2was prepared on single-crystal silicon by the self-assembly of silane on the hydroxylated substrate followed with the deposition of nanometer AgO2 on the silane SAMs from an aqueous Ag2O gel. The resultant composite film was characterized by means of X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). The contact angles of distilled water on the silane SAMs and the composite film were measured to compare the surface states. The experiment shows that the nanometer Ag2O can be easily incorporated in the silane SAMs and lead to changed surface state of the composite film. Nanometer Ag2O crystallites in a size of about 20 nm distribute quite uniformly in the composite film. It was anticipated that the composite film might find application to the protection of single-crystal Si substrate in MEMS devices and also propose a novel single electron device structure based on nanoscale Ag2O colloidal particles.  相似文献   

16.
The synthesis and characterization of water-soluble dispersions of Ag nanoparticles by the reduction of AgNO(3) using tryptophan under alkaline synthesis conditions are reported. The Ag nanoparticle formation was very slow at low concentration and rapid at extremes. For surface modification and redox reactions, manipulating the interparticles interaction controlled the size of Ag nanoparticles aggregates. Our results suggest that the replacement of the BH(4)(-) ions adsorbed on the nanoparticle surface by tryptophan destabilizes the particles and further caused aggregation. A mechanism is proposed for the formation of silver nanoparticles by tryptophan. The experimental results are supported by theoretical calculations. The Ag nanoparticles were characterized by UV-vis absorption, dynamic light scattering and transmission electron microscopy techniques.  相似文献   

17.
Successful realization of highly crystalline and densely packed Ag2S nanocrystal (NC) films has been achieved by directly converting precursor molecules, Ag(SCOPh), on preheated substrates. When an aliquot of Ag(SCOPh) solution dissolved in trioctylphosphine (TOP) is applied on preheated solid substrates at 160 degrees C, such as SiO2/Si, H-terminated Si, and quartz. Ag2S NC thin films have been formed with instant phase and color changes of the precursor solutions from pale yellow homogeneous solution to black solid films. The average diameter of individual Ag2S NCs forming thin films is ca. 25 nm, as confirmed by examining both isolated Ag2S NCs from thin films and as-made thin film samples by using transmission electron microscopy (TEM) and scanning electron microscopy (SEM), respectively. Powder X-ray diffraction (XRD) pattern shows that the synthesized Ag2S NCs have well-defined monoclinic acanthite phase. Direct precursor conversion process has resulted in densely packed Ag2S NCs with reduced interparticle distances owing to efficient removal of TOP during the reaction. Compared to the devices fabricated by the drop-coating process, Ag2S thin film devices fabricated by direct precursor conversion process have shown a ca. 300-fold increased conductance. Such Ag2S NC devices have also displayed reliable photoresponses upon white light illumination with high photosensitivity (S approximately equal to 1).  相似文献   

18.
A simple yet effective way is described to fabricate a nanostructured platinum electrode with extra high surface area. The fabrication process is the combination of the UPD monolayer and galvanic displacement in one electrochemical process and it is conducted in one medium and at the ambient temperature without using any toxic or corrosive electrolytes. The porous structure and roughness factor of the nanostructured Pt film can be controlled with the sweeping cycle of cyclic voltammetry (CV) easily. The nanoporous Pt deposit can enhance the response of the detection of glucose significantly and selectively without any enzyme incorporation. It is demonstrated that the nanostructured Pt film serves as a new electrode material in the application of nonenzymatic glucose detection.  相似文献   

19.
Cross-linking of sulfonated poly(ether-ether)ketone-poly(vinyl alcohol) (SPEEK-PVA) materials yields flexible polymer films, possessing high light-sensitivity and ion-exchange capabilities. Adsorbed Ag+ ions are photoreduced in the film under illumination (lambda = 350 nm), leading to metal nanoparticle formation in places where the film has been exposed to the light. Nanoparticles form via reduction of Ag+ by the polymeric alcohol radicals, generated in the system as a result of photochemical H-abstraction from PVA molecules by the excited carbonyl triplet state of SPEEK. Use of the films for direct metal photopatterning is demonstrated.  相似文献   

20.
Raman analyses were performed on thin films prepared from B-doped Si nanoparticles with an average diameter of 15 nm using the spin-coating method. The resulting spectrum exhibited a broad band with a peak near 520 cm−1. The band was decomposed into three bands corresponding to the crystalline, grain boundary (GB), and amorphous regions by the least-squares band-fitting method based on the three Voigt bands. The fractions of the crystalline, GB, and amorphous regions were 37%, 35%, and 28%, respectively. A spherical particle exhibited an ordered crystalline core surrounded by a disordered shell in a transmission electron microscope (TEM) image. The crystalline fraction of the 15-nm B-doped Si nanoparticle film was much lower than that of the 19-nm P-doped Si nanoparticle film. This result suggested that the B-doping mechanism was different from that of P-doping. The temperature of the sample was estimated from the ratio of the peak intensities of anti-Stokes to Stokes Raman bands (IAS/IS) observed near 520 cm−1. The temperature of the B-doped Si nanoparticle film upon irradiation at a power density of 4.6 kW/cm2 was 298 °C, whereas the temperature of the P-doped Si nanoparticle film was 92 °C. The B-doped Si nanoparticle films were capable of producing light-induced heat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号