首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Findings from physics education research strongly point to the critical need for teachers’ use of multiple representations in their instructional practices such as pictures, diagrams, written explanations, and mathematical expressions to enhance students' problem‐solving ability. In this study, we explored use of problem‐solving tasks for generating multiple representations as a scaffolding strategy in a high school modeling physics class. Through problem‐solving cognitive interviews with students, we investigated how a group of students responded to the tasks and how their use of such strategies affected their problem‐solving performance and use of representations as compared to students who did not receive explicit, scaffolded guidance to generate representations in solving similar problems. Aggregated data on students' problem‐solving performance and use of representations were collected from a set of 14 mechanics problems and triangulated with cognitive interviews. A higher percentage of students from the scaffolding group constructed visual representations in their problem‐solving solutions, while their use of other representations and problem‐solving performance did not differ with that of the comparison group. In addition, interviews revealed that students did not think that writing down physics concepts was necessary despite being encouraged to do so as a support strategy.  相似文献   

2.
In this article, we will describe the results of a study of 6th grade students learning about the mathematics of change. The students in this study worked with software environments for the computer and the graphing calculator that included a simulation of a moving elevator, linked to a graph of its velocity vs. time. We will describe how the students and their teacher negotiated the mathematical meanings of these representations, in interaction with the software and other representational tools available in the classroom. The class developed ways of selectively attending to specific features of stacks of centimeter cubes, hand-drawn graphs, and graphs (labeled velocity vs. time) on the computer screen. In addition, the class became adept at imagining the motions that corresponded to various velocity vs. time graphs. In this article, we describe this development as a process of learning to see mathematical representations of motion. The main question this article addresses is: How do students learn to see mathematical representations in ways that are consistent with the discipline of mathematics? This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
4.
This paper focuses on a portion of a research project involving a group of inner-city middle school students who used SimCalc simulation software over the course of an entire school year to investigate ideas relating to graphical representations of motion and speed. The classroom environment was one in which students openly defended and justified their thinking as they actively explored and solved rich mathematical problems. The activities, generally speaking, involved functions that were intended to tap students’ real world intuitions as well as prior mathematical skills and understandings about speed, motion, and other graphical representations that underlie the mathematics of motion. Results indicate that these students did build ideas related to those concepts. This paper will provide documentation of the ways in which these students interpreted graphical representations involving linear and quadratic functions that are associated with constant and linearly changing velocities, respectively.  相似文献   

5.
One way of solving multiple objective mathematical programming problems is finding discrete representations of the efficient set. A modified goal of finding good discrete representations of the efficient set would contribute to the practicality of vector maximization algorithms. We define coverage, uniformity and cardinality as the three attributes of quality of discrete representations and introduce a framework that includes these attributes in which discrete representations can be evaluated, compared to each other, and judged satisfactory or unsatisfactory by a Decision Maker. We provide simple mathematical programming formulations that can be used to compute the coverage error of a given discrete representation. Our formulations are practically implementable when the problem under study is a multiobjective linear programming problem. We believe that the interactive algorithms along with the vector maximization methods can make use of our framework and its tools. Received April 7, 1998 / Revised version received March 1999?Published online November 9, 1999  相似文献   

6.
Visual representations and manipulatives are a highly advocated mathematical tool for the teaching and learning of multiplication and division. Although there is some prior research on elementary teachers’ general use of manipulatives and visual representations, there is little to no specific focus on use of such representations on a specific mathematical concept. The present study examined third grade teachers’ reported use of visual representations for teaching multiplication and division. Findings indicate prevalent use of discrete models and infrequent use of continuous models. Length models and number lines are rarely used across all Common Core standards focusing on multiplication/division, with numeric‐only representations being reported frequently across all standards. Groups‐of and array models were the most prevalent visual model reported by third grade teachers. Although teachers report higher degrees of access to certain materials than previous reports on manipulative use, interview data suggests this may have more to do with purchase agreements between school districts and textbook companies than pedagogical preferences of classroom teachers. Supporting findings in prior decades, teachers in the present study report prevalent use of flashcards, charts and grid paper, and variations of counters.  相似文献   

7.
The purpose of this paper is to examine the cognitive demand levels of tasks used by an in-service primary teacher during length measurement and perimeter instruction and to examine a possible link between these tasks and the teacher’s mathematical knowledge in teaching. For this purpose, a case study approach was used and the data was drawn from classroom observations, semi-structured interviews, and field notes. Specific tasks from length measurement and perimeter instruction were presented and analyzed according to the Mathematical Tasks Framework. Then, how these tasks gave information about the teacher’s mathematical knowledge in teaching in the length measurement and perimeter topics was examined according to the Knowledge Quartet model. According to the findings of the study, the tasks used during length measurement and perimeter instruction were mostly categorized as low-level tasks. In addition, teacher’s mathematical knowledge in teaching affected the implementation of the tasks.  相似文献   

8.
This paper examines the process through which students learn to make functional use of computer algebra systems (CAS), and the interaction between that process and the wider mathematical development of students. The result of ‘instrumentalising‘ a device to become a mathematical tool and correspondingly ‘instrumenting’ mathematical activity through use of that tool is not only to extend students' mathematical technique but to shape their sense of the mathematical entities involved. These ideas have been developed within a French programme of research – as reported by Artigue in this issue of the journal – which has explored the integration of CAS – typically in the form of symbolic calculators – into the everyday practice of mathematics classrooms. The French research –influenced by socio-psychological theorisation of the development of conceptual systems- seeks to take account of the cultural and cognitive facets of these issues, noting how mathematical norms – or their absence – shape the mental schemes which students form as they appropriate CAS as tools. Instrumenting graphic and symbolic reasoning through using CAS influences the range and form of the tasks and techniques experienced by students, and so the resources available for more explicit codification and theorisation of such reasoning. This illuminates an influential North American study– conducted by Heid – which French researchers have seen as taking a contrasting view of the part played by technical activity in developing conceptual understanding. Reconsidered from this perspective, it appears that while teaching approaches which ‘resequence skills and concepts’ indeed defer – and diminish –attention to routinised skills, the tasks introduced in their place depend on another –albeit less strongly codified – system of techniques, supporting more extensive and active theorisation. The French research high lights important challenges which arise in instrumenting classroom mathematical activity and correspondingly instrumentalising CAS. In particular, it reveals fundamental constraints on human-machine interaction which may limit the capacity of the present generation of CAS to scaffold the mathematical thinking and learning of students. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
This paper aims at presenting multiindices and multivariables study of the unified (or generalized) Voigt functions which play an important rôle in the several diverse field of physics such as astrophysical spectroscopy and the theory of neutron reactions. Some expressions (representations) of these functions are given in terms of familiar special functions of multivariables. Further representations and series expansions involving multidimensional classical polynomials (Laguerre and Hermite) of mathematical physics are established.  相似文献   

10.
The emergence of dynamic geometry environments challenges researchers in mathematics education to develop theories that capture learner’s growth in geometric understanding in this particular environment. This study coordinated the Pirie-Kieren theory and instrumental genesis to examine learner’s growth in geometric understanding when solving problems in a dynamic geometry environment. Data analysis suggested that coordinating the two theoretical approaches provided a productive means to capture the dynamic interaction between the growth in mathematical understanding and the formation/application of utilization scheme during a learner’s mathematical exploration with dynamic geometry software. The analysis of one episode on inscribing a square in a triangle was shared to illustrate this approach. This study contributes to the continuing conversation of “networking theories” in the mathematics education research community. By networking the two theoretical approaches, this paper presents a model for studying learner's growth in mathematical understanding in a dynamic learning environment while accounting for interaction with digital tools.  相似文献   

11.
The prevalence of prediction in grade-level expectations in mathematics curriculum standards signifies the importance of the role prediction plays in the teaching and learning of mathematics. In this article, we discuss benefits of using prediction in mathematics classrooms: (1) students’ prediction can reveal their conceptions, (2) prediction plays an important role in reasoning and (3) prediction fosters mathematical learning. To support research on prediction in the context of mathematics education, we present three perspectives on prediction: (1) prediction as a mental act highlights the cognitive aspect and the conceptual basis of one's prediction, (2) prediction as a mathematical activity highlights the spectrum of prediction tasks that are common in mathematics curricula and (3) prediction as a socio-epistemological practice highlights the construction of mathematical knowledge in classrooms. Each perspective supports the claim that prediction when used effectively can foster mathematical learning. Considerations for supporting the use of prediction in mathematics classrooms are offered.  相似文献   

12.
We present and develop a preliminary framework for describing the relationship between the mathematical and linguistic complexity of instructional tasks used in secondary mathematics. The initial framework was developed through a review of relevant literature. It was refined by examining how 4 ninth grade mathematics teachers of linguistically diverse groups of students described the linguistic and mathematical complexity of a set of tasks from their curriculum unit on linear functions. We close by presenting our refined framework for describing the interaction of linguistic complexity and mathematical complexity in curriculum materials, and discuss potential uses of this framework in the design of more accessible classroom learning environments for linguistically diverse students.  相似文献   

13.
Music as Embodied Mathematics: A Study of a Mutually Informing Affinity   总被引:1,自引:0,他引:1  
The argument examined in this paper is that music – when approached through making and responding to coherent musical structures,facilitated by multiple, intuitively accessible representations – can become a learning context in which basic mathematical ideas can be elicited and perceived as relevant and important. Students' inquiry into the bases for their perceptions of musical coherence provides a path into the mathematics of ratio,proportion, fractions, and common multiples. Ina similar manner, we conjecture that other topics in mathematics – patterns of change,transformations and invariants – might also expose, illuminate and account for more general organizing structures in music. Drawing on experience with 11–12 year old students working in a software music/math environment, we illustrate the role of multiple representations, multi-media, and the use of multiple sensory modalities in eliciting and developing students' initially implicit knowledge of music and its inherent mathematics. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
Using qualitative data collection and analyses techniques, we examined mathematical representations used by sixteen (N = 16) teachers while teaching the concepts of converting among fractions, decimals, and percents. We also studied representational choices by their students (N = 581).In addition to using geometric figures and manipulatives, teachers used natural language such as the words nanny and house to characterize mathematical procedures or algorithms. Some teachers used the words or phrases bigger, smaller, doubling, and building-up in the context of equivalent fractions. There was widespread use of idiosyncratic representations by teachers and students, specifically equations with missing equals signs and not multiply/dividing by one to find equivalent fractions. No evidence though of a relationship between representational forms and degree of correctness of solutions was found on student work. However, when students exhibited misconceptions, those misconceptions were linked to teachers’ use of idiosyncratic representations.  相似文献   

15.
Many epistemic activities, such as spatial reasoning, sense-making, problem solving, and learning, are information-based. In the context of epistemic activities involving mathematical information, learners often use interactive 3D mathematical visualizations (MVs). However, performing such activities is not always easy. Although it is generally accepted that making these visualizations interactive can improve their utility, it is still not clear what role interaction plays in such activities. Interacting with MVs can be viewed as performing low-level epistemic actions on them. In this paper, an epistemic action signifies an external action that modifies a given MV in a way that renders learners’ mental processing of the visualization easier, faster, and more reliable. Several, combined epistemic actions then, when performed together, support broader, higher-level epistemic activities. The purpose of this paper is to examine the role that interaction plays in supporting learners to perform epistemic activities, specifically spatial reasoning involving 3D MVs. In particular, this research investigates how the provision of multiple interactions affects the utility of 3D MVs and what the usage patterns of these interactions are. To this end, an empirical study requiring learners to perform spatial reasoning tasks with 3D lattice structures was conducted. The study compared one experimental group with two control groups. The experimental group worked with a visualization tool which provided participants with multiple ways of interacting with the 3D lattices. One control group worked with a second version of the visualization tool which only provided one interaction. Another control group worked with 3D physical models of the visualized lattices. The results of the study indicate that providing learners with multiple interactions can significantly affect and improve performance of spatial reasoning with 3D MVs. Among other findings and conclusions, this research suggests that one of the central roles of interaction is allowing learners to perform low-level epistemic actions on MVs in order to carry out higher-level cognitive and epistemic activities. The results of this study have implications for how other 3D mathematical visualization tools should be designed.  相似文献   

16.
This paper reports the results of a research exploring the mathematical connections of pre-university students while they solving tasks which involving rates of change. We assume mathematical connections as a cognitive process through which a person finds real relationships between two or more ideas, concepts, definitions, theorems, procedures, representations or meanings or with other disciplines or the real-world. Four tasks were proposed to the 33 pre-university students that participated in this research; the central concept of the first task is the slope, the last three tasks contain concepts like velocity, speed and acceleration. Task-based interviews were conducted to collect data and later analysed with thematic analysis. Results showed most of the students made mathematical connections of the procedural type, the mathematical connections of the common features type are made in smaller quantities and the mathematical connection of the generalization type is scarcely made. Furthermore, students considered slope as a concept disconnected from velocity, speed and acceleration.  相似文献   

17.
18.
Raymond Duval 《ZDM》2014,46(1):159-170
To situate the contributions of these research articles on visualization as an epistemological learning tool, we have employed mathematical, cognitive and functional criteria. Mathematical criteria refer to mathematical content, or more precisely the areas to which they belong: whole numbers (numeracy), algebra, calculus and geometry. They lead us to characterize the “tools” of visualization according to the number of dimensions of the diagrams used in experiments. From a cognitive point of view, visualization should not be confused with a visualization “tool,” which is often called “diagram” and is in fact a semiotic production. To understand how visualization springs from any diagram, we must resort to the notion of figural unity. It results methodologically in the two following criteria and questions: (1) In a given diagram, what are the figural units recognized by the students? (2) What are the mathematically relevant figural units that pupils should recognize? The analysis of difficulties of visualization in mathematical learning and the value of “tools” of visualization depend on the gap between the observations for these two questions. Visualization meets functions that can be quite different from both a cognitive and epistemological point of view. It can fulfill a help function by materializing mathematical relations or transformations in pictures or movements. This function is essential in the early numerical activities in which case the used diagrams are specifically iconic representations. Visualization can also fulfill a heuristic function for solving problems in which case the used diagrams such as graphs and geometrical figures are intrinsically mathematical and are used for the modeling of real problems. Most of the papers in this special issue concern the tools of visualization for whole numbers, their properties, and calculation algorithms. They show the semiotic complexity of classical diagrams assumed as obvious to students. In teaching experiments or case studies they explore new ways to introduce them and make use by students. But they lie within frameworks of a conceptual construction of numbers and meaning of calculation algorithms, which lead to underestimating the importance of the cognitive process specific to mathematical activity. The other papers concern the tools of mathematical visualization at higher levels of teaching. They are based on very simple tasks that develop the ability to see 3D objects by touch of 2D objects or use visual data to reason. They remain short of the crucial problem of graphs and geometrical figures as tools of visualization, or they go beyond that with their presupposition of students' ability to coordinate them with another register of semiotic representation, verbal or algebraic.  相似文献   

19.
Verschaffel  Lieven  Schukajlow  Stanislaw  Star  Jon  Van Dooren  Wim 《ZDM》2020,52(1):1-16

Word problems are among the most difficult kinds of problems that mathematics learners encounter. Perhaps as a result, they have been the object of a tremendous amount research over the past 50 years. This opening article gives an overview of the research literature on word problem solving, by pointing to a number of major topics, questions, and debates that have dominated the field. After a short introduction, we begin with research that has conceived word problems primarily as problems of comprehension, and we describe the various ways in which this complex comprehension process has been conceived theoretically as well as the empirical evidence supporting different theoretical models. Next we review research that has focused on strategies for actually solving the word problem. Strengths and weaknesses of informal and formal solution strategies—at various levels of learners’ mathematical development (i.e., arithmetic, algebra)—are discussed. Fourth, we address research that thinks of word problems as exercises in complex problem solving, requiring the use of cognitive strategies (heuristics) as well as metacognitive (or self-regulatory) strategies. The fifth section concerns the role of graphical representations in word problem solving. The complex and sometimes surprising results of research on representations—both self-made and externally provided ones—are summarized and discussed. As in many other domains of mathematics learning, word problem solving performance has been shown to be significantly associated with a number of general cognitive resources such as working memory capacity and inhibitory skills. Research focusing on the role of these general cognitive resources is reviewed afterwards. The seventh section discusses research that analyzes the complex relationship between (traditional) word problems and (genuine) mathematical modeling tasks. Generally, this research points to the gap between the artificial word problems learners encounter in their mathematics lessons, on the one hand, and the authentic mathematical modeling situations with which they are confronted in real life, on the other hand. Finally, we review research on the impact of three important elements of the teaching/learning environment on the development of learners’ word problem solving competence: textbooks, software, and teachers. It is shown how each of these three environmental elements may support or hinder the development of learners’ word problem solving competence. With this general overview of international research on the various perspectives on this complex and fascinating kind of mathematical problem, we set the scene for the empirical contributions on word problems that appear in this special issue.

  相似文献   

20.
This study looks at the various verbal and non-verbal representations used in a process of modelling the number of annual plants over time. Analysis focuses on how various representations such as words, diagrams, letters and mathematical equations evolve in the mathematization process of the modelling context. Our results show that (1) visual representations such as flowcharts are used not only in the process to symbolization, but also used in the justification of symbols, (2) some of the visual representations serve as a bridge between the words in the problem context and the symbols that represent the mathematical equations of the number of annual plants and (3) words and context help to introduce visual representations and symbols. Also, once students come up with the visual representations and symbols, they show better understanding about words used in the problem context. These observations imply that the modelling and mathematization process is not just one-directional and linear from words describing real-life situations to the symbols in mathematical equations and expressions. Rather, the mathematization can be promoted through using other visuals that help make this transition smooth by organizing the given information in a way that can be used towards mathematization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号