首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chemical force titrations-plots of the adhesive force between an atomic force microscope tip and sample as a function of pH-were acquired on alkyl monolayer-derivatized Si(111) surfaces. Gold-coated AFM tips modified with thioalkanoic acid self-assembled monolayers (SAM) were employed. Alkyl monolayer-derivatized Si(111) surfaces terminated with methyl, carboxyl, and amine groups were produced via hydrosilylation reactions between 1-alkene reagents and H-terminated silicon. The functionalized surfaces were characterized using standard surface science techniques (AFM, FTIR, and XPS). Titration of the methyl-terminated surface using the modified (carboxyl-terminated) atomic force microscope tip resulted in a small pH-independent hydrophobic interaction. Titration of the amine-terminated surface using the same tip resulted in the determination of a surface pKa of 5.8 for the amine from the pH value from the maximum in the force titration curve. A pK(1/2) of 4.3 was determined for the carboxyl-terminated Si(111) in a similar way. These results will be discussed in relation to the modified Si(111) surface chemistry and organic layer structure, as well as with respect to existing results on Au surfaces modified with SAMs bearing the same functional groups.  相似文献   

2.
Poly(methylmethacrylate) (PMMA) is a versatile polymer that displays desirable properties for development of cheap and disposable microfluidic devices for sensing biomolecular interactions. Atomic force microscopy (AFM) and chemical force titrations were used to determine the efficacy of surface modifications made to accommodate protein-substrate linkage. AFM images show the effects on surface morphology of carboxylated-, amine-, hCG antigen- and anti-hCG antibody-modified PMMA substrates. Confocal microscopy was used to determine the fluorescent intensity of labeled antibody species on the PMMA substrate, confirming the success of surface antigen/antibody immobilization. Surface pK(1/2) value for carboxylic acid and amine species grafted on PMMA were determined. When carboxylic acid or amine-terminated tips were titrated against PMMA samples terminated with the hCG antigen and anti-hCG antibody, peaks appeared in the force titration curve consistent with the pI range of the antigen or antibody species. Strong adhesive forces were present at pH values above 7.0 when the antigen was present on the PMMA substrate, and these were attributed to hydrophobic interactions between the antigen and the alkane "linker" chain attaching the amine or carboxylate group to the AFM tip. Such hydrophobic interactions were not observed with the carboxylic acid or amine/antibody combinations suggesting that the surface-linked antibody was more resistant to denaturation under higher pH. The results demonstrated the feasibility of using AFM approaches for interrogating protein grafting strategies in the fabrication of PMMA-based microsystems.  相似文献   

3.
The surface chemistry and ionization state of cross-linked poly(dimethylsiloxane) (PDMS) exposed to UV/ozone were studied as a function of treatment time. Various complementary and independent experimental techniques were utilized, which yielded information on the macroscopic as well as the nanometric scale. The average chemical composition of the PDMS surface was quantitatively investigated by time-of-flight secondary ion mass spectrometry (ToF-SIMS). It was found that the top 1-2 nm surface layer was dominated by silanol groups (-SiOH) for which the concentration increased with increasing treatment dose. The lateral distributions of the silanol groups were analyzed on the nanometer scale by means of atomic force microscopy (AFM) with chemically functionalized tip probes in aqueous buffer solutions at varying pHs. Spatially dependent pull-off force curves (also called "force volume" imaging) indicated the presence of strong chemical heterogeneity of the probed surface. This heterogeneity took the form of patches of silanol functionalities with high local concentration surrounded by a matrix of predominantly hydrophobic domains at low pH. The average pull-off forces for the entire surface scanned were significantly reduced for pH values larger than a characteristic pK(a) constant (in the range between 4.5 and 5.5). The extent of the decrease in the pull-off force and the particular value of pK(a) were found to be a function of treatment time and to differ from the commonly reported values for silanol functional groups on a homogeneous silica surface. These dependences were ascribed to the evoking of a protonation/deprotonation process of the surface silanol groups which was sensitive to the hydrophobic/hydrophilic balance of their close molecular environment. Intermolecular hydrogen bonding may also account for the shifts in the surface pK(a). Furthermore, depending on the nature of the electrolyte, a third effect related to double layer composition, as determined by specific ion adsorption, was quantitatively analyzed by streaming potential measurements in the presence of sodium chloride and phosphate electrolytes.  相似文献   

4.
Plasma polymerization has gained increasing attention in surface functionalization. We use here chemical force titration to characterize PDMS (polydimethylsiloxane) substrates modified by maleic anhydride-pulsed plasma polymerization. The coating is hydrolyzed to promote the formation of dicarboxylic acid groups. To enhance the variation of the adhesion forces as a function of pH, we use AFM tips modified in the same way as the substrates. The pH-dependent adhesion measurements are performed at different KCl concentrations. The dicarboxylic nature of the maleic acid groups clearly emerges from the force titration curves. The surface pK(a) values (pK(a1) = 3.5 +/- 0.5 and pK(a2) = 9.5 +/- 0.5) of the dicarboxylic acids are evaluated from low electrolyte concentration solutions. The values are shifted toward higher pK(a) values when compared to maleic acid in solution. The first pK(a) appears in the titration force curve for low salt concentration as a peak. This peak changes to a sigmoidal shape at higher salt concentrations. The appearance of a peak is attributed to the formation of strong hydrogen bonds between the tip and the substrate as reported in the literature. The effect of the ionic strength on the force curves is explained by the condensation of counterions on the carboxylate groups. At high pH, the adhesion force almost vanishes. On the approach, at high pH, one first observes repulsion between the tip and the substrate, which varies exponentially with the tip/substrate distance. The decay length of this repulsion force is in good agreement with theoretical predictions of the Debye length, attesting to the electrostatic nature of the interactions. We also find that the replacement of monovalent cation K(+) by the divalent cation Ca(2+) leads to significant changes in the force titration curve at high pH where the dicarboxylic groups are fully ionized. We observe that the adhesion force no longer vanishes at high pH but even slightly increases with pH, an effect that is explained by Ca(2+) ions bridging between two carboxylate groups.  相似文献   

5.
Colloidal iron oxides are an important component in soil systems and in water treatment processes. Humic-based organic compounds, containing both phenol and benzoate functional groups, are often present in these systems and compete strongly with phosphate species for binding sites on the iron oxide surfaces. Here, we examine the interaction of benzoate and phenolic groups with various iron oxide colloids using atomic force microscopy (AFM) chemical force titration measurements. Self-assembled monolayers (SAMs) of 4-(12-mercaptododecyloxy)benzoic acid and 4-(12-mercaptododecyloxy)phenol were used to prepare chemically modified Au-coated AFM tips, and these were used to probe the surface chemistry of a series of iron oxide colloids. The SAMs formed were also characterized using scanning tunneling microscopy, reflection-absorption infrared spectroscopy, and X-ray photoelectron spectroscopy. The surface pK(a) of 4-(12- mercaptododecyloxy)benzoic acid has been determined to be 4.0 +/- 0.5, and the interaction between the tip and the sample coated with a SAM of this species is dominated by hydrogen bonding. The chemical force titraton profile for an AFM probe coated with 4-(12- mercaptododecyloxy)benzoic acid and a bare iron oxide colloid demonstrates that the benzoic acid function group interacts with all three types of iron oxide sites present on the colloid surface over a wide pH range. Similar experiments were carried out on colloids precipitated in the presence of phosphoric, gallic, and tannic acids. The results are discussed in the context of the competitive binding interactions of solution species present in soils or in water treatment processes.  相似文献   

6.
A series of trialkoxysilane compounds tipped with primary amine groups were used to functionalize the surfaces of glass and colloidal silica. Streaming potential and microelectrophoretic mobility measurements were used to monitor the stability of the functionalized surfaces.Hydrolytic breakdown of the surface-to-silane coupling was induced by either successively increasing and decreasing the pH of the solution in contact with the surface, or by aging the derivatised surfaces in aqueous solution over prolonged periods of time. The chemistry of the spacer units between the trialkoxysilane group and the primary amine tip had a major influence on the subsequent hydrolytic stability. Large hydrophobic spacer groups showed small changes in the electrokinetic properties on storage, but large changes when successively titrated with acid and base through the pH range. The behavior observed with small hydrophobic spacer groups was that large changes in electrokinetic properties were obtained on storage and with pH titration.  相似文献   

7.
An atomic force microscope (AFM) method for measuring surface elasticity based on the adhesive interactions between an AFM tip and sample surfaces is introduced. The method is particularly useful when there is a large adhesion between the tip and soft samples, when the indentation method would be less accurate. For thin and soft samples, this method will have much less interference from the substrate than is found using the indentation method because there is only passive indentation induced by tip-sample adhesion; in contrast, a large indentation with a sharp tip in the sample may break its stress-strain linearity, or even make it fracture. For the case where it is difficult to accurately locate the tip-sample contact point, which is problematic for the indentation method, the method based on adhesive interactions is helpful because it does not require locating the tip-sample contact point when fitting the whole retraction force curve. The model is tested on PDMS polymers with different degrees of cross-linking.  相似文献   

8.
Electroosmotic volume flow was directly observed in a simple instrument consisting of 1 cm long a home-made support, packed between two polyethylene frits in the polypropylene tube. Equations relating electroosmotic flow (EOF) velocity and pH for two functional groups on the surface of the solid materials were developed. With these equations, we can estimate the dissociation constants of two different kinds of functional groups on modified silica gel materials simultaneously. The dissociation constants of silanol groups, benzene sulfonic acid groups, and alkyl quaternary ammonium groups on the modified and unmodified silica gel supports were estimated. The estimated pK values of the silanol groups on the silica gel and modified silica gel surfaces are between 4.0 and 4.3. The estimated pK values of the benzene sulfonic acid groups and alkyl quaternary ammonium groups on the surface of the modified silica gel are 2.6 and 8.6, respectively.  相似文献   

9.
Atomic force microscopy (AFM) was employed to characterize the surface chemistry distribution on individual polystyrene latex particles. The particles were obtained by surfactant-free emulsion polymerization and contained hydrophilic quaternary ammonium chloride, sodium sulfonate, or hydroxyethyl groups. The phase shift in dynamic force mode AFM is sensitive to charge/chemical interactions between an oscillating atomic force microscope tip and a sample surface. In this work, the phase imaging technique distinguished phase domains of 50-100 nm on the surfaces of dried latex particles in ambient air. The domains are attributed to the separation of ion-rich and ion-poor components of the polymer on the particle surface.  相似文献   

10.
A commercial atomic force microscope (AFM) outfitted with a custom control and data acquisition system was used to investigate the adhesive nature of a viscoelastic polydimethylsiloxane (PDMS) network. Due to the complex dependence of the adhesion of this sample on factors such as indentation, surface dwell time, applied stress and sample memory effects, total control of the applied stress profile between the AFM tip and sample was necessary. Since the force curves were analyzed automatically on‐line, large amounts of data could be rapidly collected, alleviating the time‐consuming task of off‐line analysis. The adhesive response is shown to increase with increasing interaction time and the maximum applied load. The results are rationalized by considering the time‐dependent stress relaxation behavior of the PDMS network as it is deformed by the AFM tip.  相似文献   

11.
Force measurements between SiO2 surfaces with and without adsorbed phenyl groups in aqueous media using the atomic force microscope (AFM) are compared. An oxidized silicon tip and an oxidized silicon wafer were hydrophobized with phenyl groups, and the long-range attraction induced by hydrophobation is shown in force vs. distance curves. The observed differences prove that the silanol groups of the unmodified SiO2 surface are replaced by the phenyl groups. Received: 4 May 1998 / Revised: 1 July 1998 / Accepted: 5 July 1998  相似文献   

12.
Force measurements between SiO2 surfaces with and without adsorbed phenyl groups in aqueous media using the atomic force microscope (AFM) are compared. An oxidized silicon tip and an oxidized silicon wafer were hydrophobized with phenyl groups, and the long-range attraction induced by hydrophobation is shown in force vs. distance curves. The observed differences prove that the silanol groups of the unmodified SiO2 surface are replaced by the phenyl groups. Received: 4 May 1998 / Revised: 1 July 1998 / Accepted: 5 July 1998  相似文献   

13.
Using an atomic force microscope (AFM) the interaction between an AFM tip and different planar solid surfaces have been measured across a long-chain poly(dimethyl siloxane) (PDMS, MW = 18,000 g/mol), a short-chain PDMS (MW = 4200 g/mol), a poly(ethylmethyl siloxane) (PEMS, MW = 16,800 g/mol), and a diblock copolymer consisting of one PDMS and one PEMS block (PDMS-b-PEMS, MW = 15,100 g/mol). The interaction changed significantly during the first 10 h after immersing the solids in the polymer melt. This demonstrates that the time scale of structural changes at a solid surface is much slower than in the bulk. On mica and silicon oxide both polymers formed an immobilized “pinned” layer beyond which a monotonically decaying repulsive force was observed. Attractive forces were observed with short-chain PDMS on silicon oxide and PEMS on mica and silicon oxide. On the basal plane of graphite PEMS caused a stable, exponentially decaying oscillatory force.  相似文献   

14.
The surface roughness of a few asperities and their influence on the work of adhesion is of scientific interest. Macroscale and nanoscale adhesion data have seemingly given inconsistent results. Despite the importance of bridging the gap between the two regimes, little experimental work has been done, presumably due to the difficulty of the experiment needed to determine how small amounts of surface roughness might influence adhesion data lying in between the two scales. To investigate the role of few-asperity contacts in adhesion, the pull-off force was measured between different sized atomic-force microscope (AFM) tips (with different roughnesses) and sample surfaces that had well-controlled material properties. There were seventeen tips of four different types, with radii from 200 nm to 60 microm. The samples were unpatterned single crystal silicon with a chemical silicon dioxide surface resulting from a standard silicon wafer clean. Some of the samples were treated with a few angstroms of vapor deposited diphenylsiloxane. We observed that the uncorrected (for surface roughness) pull-off force was independent of the radius of the AFM tip, which was contrary to all continuum-mechanics model predictions. To explain this behavior, we assumed that the interactions between the AFM tip and sample were additive, material properties were constant, and that the AFM tip, asperities, and sample surfaces were of uniform density. Based on these assumptions, we calculated a simple correction due to the measured root mean square (RMS) surface roughness of the AFM tips. The simple correction for the RMS surface roughness resulted in the expected dependence of the pull-off force on radius, but the magnitudes were higher than expected. Commercial and heat-treated AFM tips have minimal surface roughness and result in magnitudes that are more reliable. The relative uncertainty for the pull-off force was estimated to be 10%. In this paper, we derive how the cantilever and tip parameters contribute to the measured pull-off force and show how the corrected results compare with theory. Although much work is still needed, the work presented here should advance the understanding of adhesion between the macroscale and nanoscale regimes.  相似文献   

15.
The silicon surface of commercial atomic force microscopy (AFM) probes loses its hydrophilicity by adsorption of airborne and package-released hydrophobic organic contaminants. Cleaning of the probes by acid piranha solution or discharge plasma removes the contaminants and renders very hydrophilic probe surfaces. Time-of-flight secondary-ion mass spectroscopy and X-ray photoelectron spectroscopy investigations showed that the native silicon oxide films on the AFM probe surfaces are completely covered by organic contaminants for the as-received AFM probes, while the cleaning methods effectively remove much of the hydrocarbons and silicon oils to reveal the underlying oxidized silicon of the probes. Cleaning procedures drastically affect the results of adhesive force measurements in water and air. Thus, cleaning of silicon surfaces of the AFM probe and sample cancelled the adhesive force in deionized water. The significant adhesive force values observed before cleaning can be attributed to formation of a bridge of hydrophobic material at the AFM tip-sample contact in water. On the other hand, cleaning of the AFM tip and sample surfaces results in a significant increase of the adhesive force in air. The presence of water soluble contaminants at the tip-sample contact lowers the capillary pressure in the water bridge formed by capillary condensation at the AFM tip-sample contact, and this consequently lowers the adhesive force.  相似文献   

16.
The atomic force microscope (AFM) has been used to measure surface forces between silicon nitride AFM tips and individual nanoparticles deposited on substrates in 10(-4) and 10(-2) M KCl solutions. Silica nanoparticles (10 nm diameter) were deposited on an alumina substrate and alumina particles (5 to 80 nm diameter) were deposited on a mica substrate using aqueous suspensions. Ionic concentrations and pH were used to manage attractive substrate-particle electrostatic forces. The AFM tip was located on deposited nanoparticles using an operator controlled offset to achieve stepwise tip movements. Nanoparticles were found to have a negligible effect on long-range tip-substrate interactions, however, the forces between the tip and nanoparticle were detectable at small separations. Exponentially increasing short-range repulsive forces, attributed to the hydration forces, were observed for silica nanoparticles. The effective range of hydration forces was found to be 2-3 nm with the decay length of 0.8-1.3 nm. These parameters are in a good agreement with the results reported for macroscopic surfaces of silica obtained using the surface force apparatus suggesting that hydration forces for the silica nanoparticles are similar to those for flat silica surfaces. Hydration forces were not observed for either alumina substrates or alumina nanoparticles in both 10(-4) M KCl solution at pH 6.5 and 10(-2) M KCl at pH 10.2. Instead, strong attractive forces between the silicon nitride tip and the alumina (nanoparticles and substrate) were observed.  相似文献   

17.
Intrinsic acidity constants (pK(a)(int)) for Bacillus subtilis (Gram+) and Escherichia coli (Gram-) cells were calculated from potentiometric titration data at different salt concentrations. Master curves were generated by replotting charge excess data as a function of pH(S) (pH at the location of surface reactive sites) where pH(S) was determined as a function of Donnan potential, Psi(DON). This potential decreased in magnitude with increasing ionic strength, from -48.5+/-0.2 to -3.5+/-0.0 mV for B. subtilis and -47.9+/-0.3 to -3.5+/-0.0 mV for E. coli at 0.01 and 0.5 M K(+), respectively, indicating an efficient surface charge neutralization by counterions. A fully optimized continuous (FOCUS) pK(a) distribution method revealed four binding sites on B. subtilis and E. coli surfaces from the master curves with pK(a)(int) values of 3.59+/-0.38, 4.33+/-0.57, 5.94+/-0.66, and 8.64+/-0.57 for B. subtilis and 3.73+/-0.44, 4.85+/-0.71, 6.56+/-0.64, and 8.79+/-0.62 for E. coli. These were assigned to functional groups according to reported pK(a) ranges of 2.0-6.0 (carboxylic acid), 3.2-3.5 (phosphodiesters), 5.6-7.2 (phosphoric acid), and 9.0-11.0 (amine groups). Average points of zero salt effect (pH(pzse)) for B. subtilis experiments were 6.63+/-0.21 and 6.42+/-0.08 as a function of pH(bulk) and pH(S), respectively. Under the same criteria, E. coli calculations yielded 5.73+/-0.23 and 5.45+/-0.05. An understanding of metal and proton reactivity on bacterial cell surfaces can be addressed quantitatively through the use of electrostatic and chemical equilibrium modeling techniques proposed in this study. The results are consistent with those of electrical force microscopy studies used to document the intrinsic electrochemical heterogeneity of bacterial cell surfaces.  相似文献   

18.
顾仁敖  陈惠  刘国坤  任斌 《化学学报》2003,61(10):1550-1555
在镍电极表面制备了γ-氨丙基三甲摒在硅烷膜并对其形成和结构进行了研究 。镍电极表面有机官能团硅烷膜的X射线光电子能谱(XPS)结果表明氮、硅等元素 在电极表面的存在,并且氨基在膜中有若干种存在方式,包括自由氨基和质子化的 氨基。通过对表面增强拉曼散射光谱(SERS)谱图的分析,发现与电极表面作用的 吸附基团硅醇羟基和氨基发生了竞争吸附,它们及其邻近基团的拉曼谱几随着电位 的负称除了相对强度发生变化以外,还发生了一定的位移,这缘于吸咐基团吸附的 量和吸附取向随电极电位发生了变化并形成的更为复杂的界面结构;氨基不同存在 方式之间也会随之发生转变,这一结果与X射线光电子能谱分析的结果相符合。原 子力显微镜(AFM)结果表明镍电极表面的有机官能团硅烷膜呈现为一种较规则的 多孔结构。  相似文献   

19.
We have determined the pKa of surface-bound primary amine groups by determining the surface potential as a function of solution pH from the magnitude of the electric double-layer force. Using colloid-probe atomic force microscopy (AFM), we measured the force as a function of separation between a particle of radius R = 10 microm and a planar surface, each coated with a self-assembled monolayer of HS(CH2)2CONH((CH2)2O)8(CH2)2NH2. The force was measured from pH 3 to 7, and the surface potential was determined by fitting the results to solutions of the nonlinear Poisson-Boltzmann equation. The surface pKa of the primary amine group was found to be 5.0 +/- 0.2, in agreement with the results of contact-angle and chemical-force titrations on similar surfaces with primary amine groups. The surface charge density indicates that less than 1% of the NH2 groups are dissociated at pH 3, suggesting that ionization is very unfavorable in the local environment of the ethylene oxide chains. This noncontact method should be of general applicability to surfaces with ionizable groups and avoids the possible complications of large contact forces on the surfaces under study.  相似文献   

20.
Cooperativity between Br?nsted acidic defect sites on oxide surfaces and Lewis acid catalyst sites consisting of grafted calixarene-Ti(IV) complexes is investigated for controlling epoxidation catalysis. Materials are synthesized that, regardless of the surface or calixarene substituent, demonstrate nearly identical UV-visible ligand-to-metal charge-transfer bands and Ti K-edge X-ray absorption near edge spectral features consistent with site-isolated, coordinatively unsaturated Ti(IV) atoms. Despite similar Ti frontier orbital energies demonstrated by these spectra, replacing a homogeneous triphenylsilanol ligand with a silanol on a SiO2 surface increases cyclohexene epoxidation rates with tert-butyl hydroperoxide 20-fold per Ti site. Supporting calixarene-Ti active sites on fully hydroxylated Al2O3 or TiO2, which possess lower average surface hydroxyl pKa than that of SiO2, reduces catalytic rates 50-fold relative to SiO2. These effects are consistent with SiO2 surfaces balancing two competing factors that control epoxidation rates-equilibrated hydroperoxide binding at Ti, disfavored by stronger surface Br?nsted acidity, and rate-limiting oxygen transfer from this intermediate to alkenes, favored by strongly H-bonding intermediates. These observations also imply that Ti-OSi rather than Ti-OCalix bonds are broken upon hydroperoxide binding to Ti in kinetically relevant steps, which is verified by the lack of a calixarene upper-rim substituent effect on epoxidation rate. The pronounced sensitivity of observed epoxidation rates to the support oxide, in the absence of changes to the Ti coordination environment, provides experimental evidence for the importance of outer-sphere H-bonding interactions for the exceptional epoxidation reactivity of titanium silicalite and related catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号