首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The oxirane-trifluoromethane dimer generated in a supersonic expansion has been characterized by Fourier transform microwave spectroscopy. The rotational spectra of the parent species and of its two (13)C isotopomers in combination with ab initio calculations have been used to establish a C(s)() geometry for the dimer with the two monomers bound by one C-H.O and two C-H.F-C hydrogen bonds. An overall bonding energy of about 6.7 kJ/mol has been derived from the centrifugal distortion analysis. The lengths of the C-H.O and C-H.F hydrogen bonds, r(O.H) and r(F.H), are 2.37 and 2.68 A, respectively. The C-H.F-C interactions give rise to the HCF(3) internal rotation motion barrier of 0.55(1) kJ/mol, which causes the A-E splittings observed in the rotational spectra. The analysis of the structural and energetic features of the C-H.O and C-H.F-C interactions allows us to classify them as weak hydrogen bonds. Ab initio calculations predict these weak interactions to produce blue shifts in the C-H vibrational frequencies and shortenings of the C-H lengths.  相似文献   

2.
The molecular beam Fourier transform microwave spectrum of 1,4-dioxane-trifluoromethane has been assigned and measured. The two subunits form a cage stabilized by one C-H...O and two C-H...F weak hydrogen bonds. The C-H...O link involves the axial lone pair of one of the two equivalent ring oxygens, while the two C-H...F bridges connect trifluoromethane to the two axial hydrogens in positions 3 and 5. The dissociation energy has been estimated from the D(J) centrifugal distortion parameter to be approximately 6.8 kJ/mol.  相似文献   

3.
We report a computational study for the 17O NMR tensors (electric field gradient and chemical shielding tensors) in crystalline uracil. We found that N-H...O and C-H...O hydrogen bonds around the uracil molecule in the crystal lattice have quite different influences on the 17O NMR tensors for the two C=O groups. The computed 17O NMR tensors on O4, which is involved in two strong N-H...O hydrogen bonds, show remarkable sensitivity toward the choice of cluster model, whereas the 17O NMR tensors on O2, which is involved in two weak C-H...O hydrogen bonds, show much smaller improvement when the cluster model includes the C-H...O hydrogen bonds. Our results demonstrate that it is important to have accurate hydrogen atom positions in the molecular models used for 17O NMR tensor calculations. In the absence of low-temperature neutron diffraction data, an effective way to generate reliable hydrogen atom positions in the molecular cluster model is to employ partial geometry optimization for hydrogen atom positions using a cluster model that includes all neighboring hydrogen-bonded molecules. Using an optimized seven-molecule model (a total of 84 atoms), we were able to reproduce the experimental 17O NMR tensors to a reasonably good degree of accuracy. However, we also found that the accuracy for the calculated 17O NMR tensors at O2 is not as good as that found for the corresponding tensors at O4. In particular, at the B3LYP/6-311++G(d,p) level of theory, the individual 17O chemical shielding tensor components differ by less than 10 and 30 ppm from the experimental values for O4 and O2, respectively. For the 17O quadrupole coupling constant, the calculated values differ by 0.30 and 0.87 MHz from the experimental values for O4 and O2, respectively.  相似文献   

4.
A family of Group 4 post-metallocene catalysts, supported by fluorine-functionalized tridentate ligands with the fluorine substituent in the locality of the metal center, is described. For the first time, the contentious C-H...F-C interaction has been characterized by a neutron diffraction study, which has allowed the position of the hydrogen atoms to be accurately determined. The nature of the weak intramolecular C-H...F-C contacts in these complexes in solution and the solid state was probed by using multinuclear NMR spectroscopy in tandem with neutron and X-ray crystallography. Evidence is presented to demonstrate that the spectroscopic C-H...F-C coupling occurs "through-space" rather than "through-bond" or by MF coordination. The titanium catalysts exhibit excellent activities and high co-monomer incorporation in olefin polymerization. The observed intramolecular C-H...F-C interactions are important with regards to potential applications in polyolefin catalysis because they substantiate the proposed ortho-F...H(beta) ligand-(polymer chain) contacts derived from DFT calculations for the remarkable fluorinated phenoxyimine Group 4 catalysts. Compared with agostic and co-catalyst...metal contacts, weak attractive noncovalent interactions between a polymer chain and a judiciously designed "active" ligand is a new concept in polyolefin catalysis.  相似文献   

5.
The ground-state rotational spectrum of the dimethyl ether dimer, (DME)(2), has been studied by molecular beam Fourier transform microwave and free jet millimeter wave absorption spectroscopies. The molecular beam Fourier transform microwave spectra of the (DME-d(6))(2), (DME-(13)C)(2), (DME-d(6))...(DME), (DME-(13)C)...(DME), and (DME)...(DME-(13)C) isotopomers have also been assigned. The rotational parameters have been interpreted in terms of a C(s) geometry with the two monomers bound by three weak C-H...O hydrogen bonds, each with an average interaction energy of about 1.9 kJ/mol. The experimental data combined with high-level ab initio calculations show this kind of interaction to be improper, blue-shifted hydrogen bonding, with an average shortening of the C-H bonds involved in the hydrogen bonding of 0.0014 A. The length of the C-H...O hydrogen bonds, r(O...H), is in the range 2.52-2.59 A.  相似文献   

6.
A new type of weak bond, i.e., the N...O=C interaction, that determines the crystal packing of N-oxalyl 2,4-dinitroanilide (1) in cooperation with C-H...O hydrogen bonds, has been found and is rationalized by ab initio calculations as being the result of electrostatic interactions.  相似文献   

7.
Systematic investigation of in-plane hydrogen-bonded complexes of ammonia with partially substituted fluorobenzenes has revealed that fluorobenzene, difluorobenzene, and trifluorobenzene favor formation of cyclic complexes with a C-H...N-H...F-C binding motif. On the other hand, tetrafluorobenzene and pentafluorobenzene favor formation of linear C-H...N hydrogen-bonded complexes. The complete absence of exclusively linear N-H...F hydrogen-bonded complexes for the entire series indicates that C-F bond in fluorobenzenes is a reluctant hydrogen-bond acceptor. However, fluorine does hydrogen bond when cooperatively stabilized with C-H...N hydrogen bonds for the lower fluoro analogues. The propensity of fluorobenzenes to adapt to the C-H...N-H...F-C binding motif decreases with the progressive fluorination of the benzene ring and disappears completely when benzene ring is substituted with five or more fluorine atoms.  相似文献   

8.
Bis(trifluoromethylsulfonylamino)methane in an inert medium exists as an equilibrium mixture of monomeric forms with various types of intramolecular hydrogen bonds, whose population depends on the polarity of the medium. The energetically most favorable form is a symmetrical form containing two N-H...O=S bonds. Less stable are the isomer with two N-H...F-C bonds and the unsymmetrical isomer with two different hydrogen bonds. N-[(Trifluoromethylsulfonyl)aminomethyl]acetamide contains one intramolecular intramolecular N-H...O=C hydrogen bond and preserves ability for self-association.  相似文献   

9.
The hydrogen-bonded complexes of the nucleobase mimic 2-pyridone (2PY) with seven different fluorinated benzenes (1-, 1,2-, 1,4-, 1,2,3-, 1,3,5-, 1,2,3,4-, and 1,2,4,5-fluorobenzene) are important model systems for investigating the relative importance of hydrogen bonding versus pi-stacking interactions in DNA. We have shown by supersonic-jet spectroscopy that these dimers are hydrogen bonded and not pi-stacked at low temperature (Leist, R.; Frey, J. A.; Leutwyler, S. J. Phys. Chem. A 2006, 110, 4180). Their geometries and binding energies D(e) were calculated using the resolution of identity (RI) M?ller-Plesset second-order perturbation theory method (RIMP2). The most stable dimers are bound by antiparallel N-H...F-C and C-H...O=C hydrogen bonds. The binding energies are extrapolated to the complete basis set (CBS) limit, , using the aug-cc-pVXZ basis set series. The CBS binding energies range from -D(e,CBS) = 6.4-6.9 kcal/mol and the respective dissociation energies from -D(0,CBS) = 5.9-6.3 kcal/mol. In combination with experiment, the latter represent upper limits to the dissociation energies of the pi-stacked isomers (which are not observed experimentally). The individual C-H...O=C and N-H...F-C contributions to D(e) can be approximately separated. They are nearly equal for 2PY.fluorobenzene; each additional F atom strengthens the C-H...O=C hydrogen bond by approximately 0.5 kcal/mol and weakens the C-F...H-N hydrogen bond by approximately 0.3 kcal/mol. The single H-bond strengths and lengths correlate with the gas-phase acid-base properties of the C-H and C-F groups of the fluorobenzenes.  相似文献   

10.
Very short C-H...O, N-H...O, and O-H...O hydrogen bonds have been generated utilizing the cyclic phosphate [CH2(6-t-Bu-4-Me-C6H2O)2]P(O)OH (1). X-ray structures of (i) 1 (unsolvated, two polymorphs), 1...EtOH, and 1...MeOH, (ii) [imidazolium](+)[CH2(6-t-Bu-4-Me-C6H2O)2PO2](-)...MeOH [2], (iii) [HNC5H4-N=N-C5H4NH](2+)[(CH2(6-t-Bu-4-Me-C6H2O)2PO2)2](2-)...4CH3CN...H2O [3], (v) [K, 18-crown-6](+)[(CH2(6-t-Bu-4-Me-C6H2O)2P(O)OH)(CH2(6-t-Bu-4-Me-C6H2O)2PO2)](-)...2THF [4], (vi) 1...cytosine...MeOH [5], (vii) 1...adenine...1/2MeOH [6], and (viii) 1...S-(-)-proline [7] have been determined. The phosphate 1 in both its forms is a hydrogen-bonded dimer with a short O-H...O distance of 2.481(2) [triclinic form] or 2.507(3) A [monoclinic form]. Compound 2 has a helical structure with a very short C-H...O hydrogen bond involving an imidazolyl C-H and methanol in addition to N-H...O hydrogen bonds. A helical motif is also seen in 5. In 3, an extremely short N-H...O hydrogen bond [N...O 2.558(4) A] is observed. Compounds 6 and 7 also exhibit short N-H...O hydrogen bonds. In 1...EtOH, a 12-membered hydrogen-bonded ring motif, with one of the shortest known O-H...O hydrogen bonds [O...O 2.368(4) A], is present. 1...MeOH is a similar dimer with a very short O(-H)...O bond [2.429(3) A]. In 4, the deprotonated phosphate (anion) and the parent acid are held together by a hydrogen bond on one side and a coordinate/covalent bond to potassium on the other; the O-H...O bond is symmetrical and very strong [O...O 2.397(3) A].  相似文献   

11.
The molecular dipole moment of the 3,4-bis(dimethylamino)-3-cyclobutene-1,2-dione (DMACB) molecule and its enhancement in the crystal was evaluated by periodic RHF ab initio computations. A discrete boundary partitioning of the electronic density that allows an unambiguous partitioning of the molecular space in the condensed phase was adopted. The resulting molecular dipole in the crystal compares favorably with the experimental value obtained by a multipolar analysis of single-crystal X-ray diffraction data recorded at 20 K, using a fuzzy boundary partitioning of the derived pseudoatom densities. We show that a large and highly significant molecular dipole enhancement may occur upon crystallization, despite the lack of a strongly hydrogen bonded environment in the crystal. The 23 unique C-H...O interactions which are formed upon packing of the DMACB molecule induce an increase in the molecular dipole (over 75%) that is comparable to or greater than that found in systems which are characterized by the stronger O-H...O and N-H...O hydrogen bonds. The DMACB molecule constitutes an excellent system for the study of C-H...O interactions in the condensed phase, since no other kind of competing hydrogen bonds is present in its crystal. A simple and qualitative model for the matrix contribution to the DMACB molecular dipole enhancement in the crystal is proposed. The formation of several weak C-H...O bonds is found to yield a small (about 0.2 e) net flux of electronic charge flowing from the hydrogens of the methyl groups to the carbonyl oxygen atoms. Despite the limited increase of the intramolecular charge transfer upon crystallization, a large molecular dipole enhancement occurs because the centroids of the positive and negative induced charges are quite far apart. This work highlights a new and important role of the C-H...O bond, besides those already known in the literature.  相似文献   

12.
Fumaramide derivatives were analyzed in solution by (1)H NMR spectroscopy and in the solid state by X-ray crystallography in order to characterize the formation of CH...O interactions under each condition and to thereby serve as models for these interactions in peptide and protein structure. Solutions of fumaramides at 10 mM in CDCl(3) were titrated with DMSO-d(6), resulting in chemical shifts that moved downfield for the CH groups thought to participate in CH...O=S(CD(3))(2) hydrogen bonds concurrent with NH...O=S(CD(3))(2) hydrogen bonding. In this model, nonparticipating CH groups under the same conditions showed no significant change in chemical shifts between 0.0 and 1.0 M DMSO-d(6) and then moved upfield at higher DMSO-d(6) concentrations. At concentrations above 1.0 M DMSO-d(6), the directed CH...O=S(CD(3))(2) hydrogen bonds provide protection from random DMSO-d(6) contact and prevent the chemical shifts for participating CH groups from moving upfield beyond the original value observed in CDCl(3). X-ray crystal structures identified CH...O=C hydrogen bonds alongside intermolecular NH...O=C hydrogen bonding, a result that supports the solution (1)H NMR spectroscopy results. The solution and solid-state data therefore both provide evidence for the presence of CH...O hydrogen bonds formed concurrent with NH...O hydrogen bonding in these structures. The CH...O=C hydrogen bonds in the X-ray crystal structures are similar to those described for antiparallel beta-sheet structure observed in protein X-ray crystal structures.  相似文献   

13.
The bis(N-ylide) Pd(II) complexes cis-[PdX2[eta2-[C(H)NCxHy]2CO]] (X=I, NCxHy=NC5H5, 2a; X=Br, NCxHy=NC5H5 and NC5H3-2,3-Me2, 2c, isoquinolinium NC9H7, 2d) have been prepared by reaction of the corresponding bis-pyridinium salts with Pd(OAc)2 (1:1 molar ratio). Compounds 2 react with AgClO4 and Tl(acac) (1:1:1 molar ratio) to give the acetylacetonato derivatives [Pd(acac-O,O'[eta2-[C(H)NCxHy]2CO]]ClO4 (3a, c, d). In compounds 2 and 3, the bis-ylide is bonded as a C,C-chelate ligand through the two ylidic Calpha atoms. The reaction is stereoselective, and only one diastereoisomer is observed (meso form, RS/SR). The origin of the observed stereoselectivity lies with the establishment of intramolecular C-H...O=C hydrogen bonds between the ortho protons of the pyridine or isoquinoline fragments and the carbonyl oxygen, as it has been shown by density functional theory (DFT) calculations (B3LYP level) and Bader analysis of the electron density on model pyridinium ylides. Despite the inherent weakness of the C-H...O=C bonds, the results show that in these N-ylides the hydrogen bonds are stronger than expected and should be classified as moderate H bonds.  相似文献   

14.
Simple complexes connected through C-H...S and C-H...N interactions are investigated: CH4...NH3, C2H4...NH3, C2H2...NH3, CH4...SH2, C2H4...SH2, and C2H2...SH2. Ab initio and DFT calculations are performed (SCF, MP2, B3LYP) using different basis sets up to the MP2/aug-cc-pVQZ//MP2/aug-cc-pVDZ level of approximation. The Bader theory is applied since MP2/6-311++G(d,p) wave functions are used to find and to characterize bond critical points in terms of electron densities and their Laplacians. The influence of hybridization on the properties of C-H...S and C-H...N systems is also studied showing that the strength of such interactions increases in the following order: C(sp3)-H...Y, C(sp2)-H...Y, C(sp)-H...Y, where Y = S, N--it is in line with the previous findings on C-H...O hydrogen bonds. The results also show that CH4...SH2 and C2H4...SH2 complexes should be rather classified as van der Waals interactions and not as hydrogen bonds. The frequency associated with the C-H stretch of C(sp3)-H...S is blue-shifted.  相似文献   

15.
The cooperativity between the O-H...O and C-H...O hydrogen bonds has been studied by quantum chemical calculations at the MP2/6-311++G(d,p) level in gaseous phase and at the B3LYP/6-311++G(d,p) level in solution. The interaction energies of the O-H...O and C-H...O H-bonds are increased by 53 and 58%, respectively, demonstrating that there is a large cooperativity. Analysis of hydrogen-bonding lengths, OH bond lengths, and OH stretching frequencies also supports such a conclusion. By NBO analysis, it is found that orbital interaction plays a great role in enhancing their cooperativity. The strength increase of the C-H...O H-bond is larger than that of the O-H...O H-bond due to the cooperativity. The solvent has a weakening effect on the cooperativity.  相似文献   

16.
Microsolvated formamide clusters have been generated in a supersonic jet expansion and characterized using Fourier transform microwave spectroscopy. Three conformers of the monohydrated cluster and one of the dihydrated complex have been observed. Seven monosubstituted isotopic species have been measured for the most stable conformer of formamide...H(2)O, which adopts a closed planar ring structure stabilized by two intermolecular hydrogen bonds (N-H...O(H)-H...O=C). The two higher energy forms of formamide...H(2)O have been observed for the first time. The second most stable conformer is stabilized by a O-H...O=C and a weak C-H...O hydrogen bond, while, in the less stable form, water accepts a hydrogen bond from the anti hydrogen of the amino group. For formamide...(H(2)O)(2), the parent and nine monosubstituted isotopic species have been observed. In this cluster the two water molecules close a cycle with the amide group through three intermolecular hydrogen bonds (N-H...O(H)-H...O(H)-H...O=C), the nonbonded hydrogen atoms of water adopting an up-down configuration. Substitution (r(s)) and effective (r(0)) structures have been determined for formamide, the most stable form of formamide...H(2)O and formamide...(H(2)O)(2). The results on monohydrated formamide clusters can help to explain the observed preferences of bound water in proteins. Clear evidence of sigma-bond cooperativity effects emerges when comparing the structures of the mono- and dihydrated formamide clusters. No detectable structural changes due to pi-bond cooperativity are observed on formamide upon hydration.  相似文献   

17.
Amide-water mixtures are studied by all-atom molecular dynamics (MD) simulations and the relative temperature-dependent NMR experiment. The weak C-H...O contacts are found in the amide-water systems theoretically and experimentally. The statistical results of the average numbers of hydrogen bonds indicate that the methyl groups in amide molecules represent different capabilities in forming the weak C-H...O contacts. The statistics also imply that the C-H...O contacts are more obvious in the amide-rich region than those in the water-rich region. The temperature-dependent NMR spectra are also adopted to investigate the weak C-H...O contacts in the amide-water systems. The relative chemical shifts of the methyl groups are in good agreement with the MD simulations.  相似文献   

18.
The geometric isotope effect (GIE) of sp- (acetylene-water), sp(2)- (ethylene-water), and sp(3)- (methane-water) hybridized intermolecular C-H...O and C-D...O hydrogen bonds has been analyzed at the HF/6-31++G level by using the multicomponent molecular orbital method, which directly takes account of the quantum effect of proton/deuteron. In the acetylene-water case, the elongation of C-H length due to the formation of the hydrogen bond is found to be greater than that of C-D. In contrast to sp-type, the contraction of C-H length in methane-water is smaller than that of C-D. After the formation of hydrogen bonds, the C-H length itself in all complexes is longer than C-D and the H...O distance is shorter than D...O, similar to the GIE of conventional hydrogen bonds. Furthermore, the exponent (alpha) value is decreased with the formation of the hydrogen bond, which indicates the stabilization of intermolecular C-H...O hydrogen bonds as well as conventional hydrogen bonds. In addition, the geometric difference induced by the H/D isotope effect of the intramolecular C-H...O hydrogen bond shows the same tendency as that of intermolecular C-H...O. Our study clearly demonstrates that C-H...O hydrogen bonds can be categorized as typical hydrogen bonds from the viewpoint of GIE, irrespective of the hybridizing state of carbon and inter- or intramolecular hydrogen bond.  相似文献   

19.
Concentration- and temperature-dependent IR, NMR and dipole-moment studies on 4-N,N-dimethylamino-1,1,1-trifluoro-3-buten-2-one and two of its higher homologues showed that these compounds undergo reversible dimerization in nonpolar solvents. Antiparallel "closed" dimers are formed with a network of improper intermolecular C-H...O hydrogen bonds. Quantitative analysis of the 1H NMR data yielded delta H0 = -17.6 kJ mol-1 and delta S0 = -46.9 J deg-1 mol-1. The interactions observed are the strongest among those involving a C-H group reported so far. The complex described here is the first example of a cyclic complex stabilized by two improper C-H...O hydrogen bonds. The conclusions drawn from the solution and solid-state data were confirmed by ab initio calculations.  相似文献   

20.
A charge density study of crystalline 1-(4-fluorophenyl)-3,6,6-trimethyl-2-phenyl-1,5,6,7-tetrahydro-4H-indol-4-one (A) and 1-(4-fluorophenyl)-6-methoxy-2-phenyl-1,2,3,4-tetrahydroisoquinoline (B) has been carried out using high-resolution X-ray diffraction data collected at 113(2) K. Weak intermolecular interactions of the type C-H...O, C-H...pi, and pi...pi hold the molecules together in the crystal lattice along with interactions of the type C-H...F and unusual C-F...F-C examined via charge density analysis. The topological features are evaluated in terms of Bader's theory of atoms in molecules through the first four criteria of Koch and Popelier. The C-F...F-C contact is observed to be across the center of symmetry in B and not in A, and further, this interaction appears to possess a certain correlation with the electron density properties at the critical point which suggests that such an interaction fits into the hierarchy of weak interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号