首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
This study aims at establishing the interrelation between the current-carrying capacity and peculiarities of magnetoresistance of granular YBa2Cu3O7 ? δ HTSCs (T c = 92.5 K). The transverse magnetoresistance of several batches of YBa2Cu3O7 ? δ HTSC samples with noticeably different values of critical supercurrent density j c is measured in magnetic fields H ext up to H ext max ≈ 500 Oe in a wide range of transport currents (5 mA ≤ I ≤ 1600 mA) at T = 77.4 K. Samples with relatively high values of j c (H ext = 0) ≥ 100 A/cm2 do not exhibit any anomalies in their field dependences. Magnetoresistance jumps δρBG-VG273K are observed for samples with low values of j c ≥ 20 A/cm2 in fields H BG-VG ≈ 200–260 Oe. The width ΔH BG-VG of the anomalous resistance region increases upon an increase in I. The magnetoresistance jumps decrease with increasing I in increasing field H ext(0 → H ext max ) and increase in decreasing field H ext(H ext max → 0). It is found that these peculiarities of the field dependences of magnetoresistance are associated with a first-order phase transition (in magnetic field) in the vortex structure of YBa2Cu3O7 ? δ HTSCs of the Bragg glass-vortex glass type.  相似文献   

2.
3.
To study the modification of the value of the nuclear quadrupole moment obtained without Sternheimer correction from measurements in states with different principal quantum numbers, the hyperfine structure splitting of the 52 P 3/2 and the 62 P 3/2 excited states of Rb I has been investigated with the optical double resonance method. The experiments, in which isotopic enriched samples of Rb85 and Rb87 were used, have been carried out in the 52 P 3/2 state without a static magnetic field. In the 62 P 3/2 state, a static magnetic field was applied. For the 52 P 3/2 state, the hyperfine structure constants areA(Rb85)=25.029(16) Mc/s,B(Rb85)=26.032(70) Mc/s,A(Rb87)=84.852(30) Mc/s,B(Rb87)=12.611(70) Mc/s. The corresponding constants for the 62 P 3/2 state areA(Rb85)=8.25(10) Mc/s,B(Rb85)=8.16(20) Mc/s,A(Rb87)=27.96(35) Mc/s,B(Rb87)=3.95(10) Mc/s. The values of the nuclear quadrupole moments, derived from both finestructure states, can be brought into agreement when the Sternheimer core correction is applied. The Landé factor for the 62 P 3/2 state isg j=1.334(1).  相似文献   

4.
In QCD, the strengths of the large scale temperature dependent chromomagnetic, B3, B8, and usual magnetic, H fields spontaneously generated in quark-gluon plasma after the deconfinement phase transition (DPT), are estimated. The consistent at high temperature effective potential accounting for the oneloop plus daisy diagrams is used. The heavy ion collisions at the LHC and temperatures T not much higher than the phase transition temperature Td are considered. The critical temperature for the magnetized plasma is found to be Td (H) ~ 110–120 MeV. This is essentially lower compared to the zero field value Td (H=0) ~ 160–180 MeV usually discussed in the literature. Due to contribution of quarks, the color magnetic fields act as the sources generating H. The strengths of the fields are B3(T), B8(T) ~ 1018–1019 G, H(T) ~ 1016–1017 G for temperatures T ~ 160–220 MeV. At temperatures T < 110–120 MeV the effective potential minimum value being negative approaches to zero. This is signaling the absence of the background fields and color confinement.  相似文献   

5.
The penetration of a magnetic flux into a type-II high-T c superconductor occupying the half-space x > 0 is considered. At the superconductor surface, the magnetic field amplitude increases in accordance with the law b(0, t) = b 0(1 + t)m (in dimensionless coordinates), where m > 0. The velocity of penetration of vortices is determined in the regime of thermally activated magnetic flux flow: v = v 0exp?ub;?(U 0/T )(1-b?b/?x)?ub;, where U 0 is the effective pinning energy and T is the thermal energy of excited vortex filaments (or their bundles). magnetic flux “Giant” creep (for which U 0/T? 1) is considered. The model Navier-Stokes equation is derived with nonlinear “viscosity” vU 0/T and convection velocity v f ∝ (1 ? U 0/T). It is shown that motion of vortices is of the diffusion type for j → 0 (j is the current density). For finite current densities 0 < j < j c, magnetic flux convection takes place, leading to an increase in the amplitude and depth of penetration of the magnetic field into the superconductor. It is shown that the solution to the model equation is finite at each instant (i.e., the magnetic flux penetrates to a finite depth). The penetration depth x eff A (t) ∝ (1 + t)(1 + m/2)/2 of the magnetic field in the superconductor and the velocity of the wavefront, which increases linearly in exponent m, exponentially in temperature T, and decreases upon an increase in the effective pinning barrier, are determined. A distinguishing feature of the solutions is their self-similarity; i.e., dissipative magnetic structures emerging in the case of giant creep are invariant to transformations b(x, t) = βm b(t/β, x(1 + m/2)/2), where β > 0.  相似文献   

6.
We have examined an analog to the extended boundary conditions method (EBCM) with the standard spherical basis, which is popular in light scattering theory, with respect to its applicability to the solution of an electrostatic problem that arises for multilayer scatterers the sizes of which are smaller compared to the wavelength of the incident radiation. It has been found that, in the case of two or more layers, to determine the polarizability and other optical characteristics of particles in the far-field zone, the parameters of the surfaces of layers should obey the condition max{σ1(j)} < min{σ2(j)}. In this case, appearing infinite systems of linear equations for expansion coefficients of unknown fields have a unique solution, which can be found by the reduction method. For nonspheroidal particles, this condition is related to the convergence radii of expansions of regular and irregular fields outside and inside of the particle, including its shells—R1(j) = σ1(j) and R2(j) = σ2(j). In other words, a spherical shell should exist in which expansions of all regular and irregular fields converge simultaneously. This condition is a natural generalization of the result for homogeneous particles, for which such a condition is imposed only on expansions of the “scattered” and internal fields—R1 < R2. For spheroidal multilayer particles, which should be singled out into a separate class, the EBCM applicability condition is written as max{σ1(1), σ1(2), …, σ1(J?1), σ1(J)} < min{σ2(1), σ2(2), …, σ2(J?1)} and parameters σ2(j) of the surfaces of shells are not related to corresponding convergence radii R2j of irregular fields. Numerical calculations for two-layer spheroids and pseudospheroids have confirmed completely theoretical inferences. Apart from the EBCM algorithm, an approximate formula has been proposed for the calculation of the polarizability of two-layer particles, in which the polarizability of a two-layer particle is interpreted as a linear combination of the polarizabilities of homogeneous particles that consist of the materials of the shell and core proportionally to their volumes. The range of applicability of this formula is wider than that for the EBCM, and the calculation error is smaller than 1%.  相似文献   

7.
Showers generated by electrons of 200 and 440 MeV energy in single lead plates of 2, 5, and 10 radiation lengths are measured in scintillator material (NE 102 A) varying between 1.24 and 10.5 g/cm2. The mean energy deposited in a scintillator is derived fromNagel's Monte-Carlo calculations. The photon contributionn γ to the total pulseheight is of the order 15% near shower maximum tmax, it dominates the electron contributionn e in a 3 cm thick scintillator for shower depthst ≧ 4.2 · tmax. The slope of the total ionizationn e+n γ behind the shower maximum can be approximated byn(t) ~ exp(?0.264t). The shower absorption in scintillator depends on the thicknessx (g/cm2) as exp (?0.068x). An arrangement of counter trays, scintillators and lead plates is calibrated with electrons between 100 and 440 MeV energy. A suitably defined track-lengthS is shown to give minimum error in energy measurement and to depend linearly on electron energy. The track-length constant of 22 MeV/r.l. is compared with the results of other authors.  相似文献   

8.
For a 2D electron system in silicon, the temperature dependence of the Hall resistance ρxy(T) is measured in a weak magnetic field in the range of temperatures (1–35 K) and carrier concentrations n where the diagonal resistance component exhibits a metallic-type behavior. The temperature dependences ρxy(T) obtained for different n values are nonmonotonic and have a maximum at Tmax ~ 0.16TF. At lower temperatures T < Tmax, the change δρxy(T) in the Hall resistance noticeably exceeds the interaction quantum correction and qualitatively agrees with the semiclassical model, where only the broadening of the Fermi distribution is taken into account. At higher temperatures T > Tmax, the dependence ρxy(T) can be qualitatively explained by both the temperature dependence of the scattering time and the thermal activation of carriers from the band of localized states.  相似文献   

9.
The level-crossing technic has been used to investigate the hyperfinestructur of the 3d 10 4p 2 P 3/2-term in Copper I by scattering the resonance line λ=3248 Å on an atomic beam of separated isotop Cu63 respectively Cu65 in an external magnetic field. From the level-crossing signals values for the magnetic dipol interaction constantsA and for the electric quadrupol interaction constantsB are deduced to beeA(Cu63)=(194,72±0,15) Mc/secB(Cu63)=?(28,8±0,6) Mc/secA(Cu65)=(208,57±0,15) Mc/secB(Cu65)=?(25,9±0,6) Mc/sec. With theA-value of the 3d 10 4p2P1/2-term from optical measurements the ratioA(2 P 3/2)∶A(2 P 1/2)≈0,4 is about twice greater than for an unperturbetalkali-like2P-term. From the width of the level-crossing signals a mean lifetime of the 3d10 4p2P3/2-term τ=(7,0±0,2) · 10?9 sec is deduced.  相似文献   

10.
Dielectric relaxation studies of binary (jk) polar mixtures of tetrahydrofuran with N-methyl acetamide, N,N-dimethyl acetamide, N-methyl formamide and N,N-dimethyl formamide dissolved in benzene(i) for different weight fractions (w j k ’s) of the polar solutes and mole fractions (x j ’s) of tetrahydrofuran at 25 °C are attempted by measuring the conductivity of the solution under 9.90 GHz electric field using Debye theory. The estimated relaxation time (τ j k ’s) and dipole moment (μ j k ’s) agree well with the reported values signifying the validity of the proposed methods. Structural and associational aspects are predicted from the plot of τ j k and μ j k against x j of tetrahydrofuran to arrive at solute–solute (dimer) molecular association upto x j =0.3 of tetrahydrofuran and thereafter solute–solvent (monomer) molecular association upto x j =1.0 for all systems except tetrahydrofuran + N,N-dimethyl acetamide.  相似文献   

11.
A low-voltage xenon-hydrogen discharge is considered theoretically at an interelectrode distance of L = 1 cm and cathode emission current densities of j s = 2–20 A/cm2. Basic parameters of the discharge plasma, in particular, the total hydrogen and xenon densities, are optimized to attain the maximum possible density of negative hydrogen ions \(N_{H^ - } (L)\) at the plasma-anode boundary. The distributions of the plasma parameters over the discharge gap are calculated for optimized regimes. According to calculations, at intermediate cathode emission current densities (j s ≈ 5–10 A/cm2) in optimized discharge regimes, the density of negative hydrogen ions in the anode region of the plasma is \(N_{H^ - } (L)\) ≈ (1.5–2.5) × 1012 cm?3 and the total plasma pressure is p 0 = 0.5–0.6 Torr.  相似文献   

12.
The magnetocaloric effect ΔTex and the magnetization in La1?xSrxMnO3 single crystals (x=0.1, 0.125, 0.175, 0.3) have been experimentally studied. The magnetic entropy and the magnetocaloric effect ΔTth were computed from magnetization curves. All the samples exhibited a maximum in the ΔTth(T) curve at T=T max . A step was observed on the ΔTex(T) curve in the region of T max , with the value of ΔTex on this step being substantially smaller than ΔTth. The step on the ΔTex(T) curve was followed by a maximum, which appeared at a temperature 20–40 K above T max . This anomalous behavior of ΔTex and ΔTth is assigned to the coexistence of two magnetic (ferro-and antiferromagnetic) phases in the crystal. The calculated value of ΔTth is determined primarily by the ferromagnetic part of the crystal and disregards the negative contribution from the antiferromagnetic part of the crystal to ΔTex.  相似文献   

13.
The hyperfinestructure of the transition65CuI, 3d 104p 2 P 3/2—3d 94s 2 m 2 D 5/2 was investigated by optical interferometric methods. For the hfs-factors the following values were found:A(65Cu,m 2 D 5/2)=26,79(3) mK andB(65Cu,m 2 D 5/2)=5,81(10) mK. The core polarization of them 2 D-terms and the Sternheimer corrections in the calculation of the quadrupolmoment of copper 65 from theB-factors of the terms 3d 9 4s2 m 2 D and 3d 10 4p 2 P 3/2. were discussed.  相似文献   

14.
The effects caused by vapor inhomogeneity over liquid helium are considered. Both pure isotopes have surface levels, whose population increases with temperature T. We separated their contribution to the temperature dependence of surface tension σ3(T) and σ4(T) and compared our theoretical results with the results of Japanese experimental works [1–3]. For liquid He3, one has σ3(T)=σ3(0)?σ 3 T2 at 0.2 K<T<1 K and σ3(T)=σ3(0)?α 3 0 T2exp(?Δ3/T) at T<0.2 K, with Δ3≈0.25 K. For liquid He4, σ4(T)=σ4(0)?AT7/3? α 4 0 T2exp(?Δ4/T) at T<2 K, where A is the Atkins constant and Δ4≈4 K. The parameters α 3 0 , α 3 , and α 4 0 depend on the fluid properties.  相似文献   

15.
Given two weighted graphs (X, bk, mk), k =?1,2 with b1b2 and m1m2, we prove a weighted L1-criterion for the existence and completeness of the wave operators W±(H2, H1, I1,2), where Hk denotes the natural Laplacian in ?2(X, mk) w.r.t. (X, bk, mk) and I1,2 the trivial identification of ?2(X, m1) with ?2(X, m2). In particular, this entails a general criterion for the absolutely continuous spectra of H1 and H2 to be equal.  相似文献   

16.
With a recording photoelectric Fabry-Perot spectrometer and an atomic-beam light source the hyperfine structure of the Mn I-resonance linesλ=4031 Å,λ=4033 Å,λ=4034 Å (3d 54s 2 a 6 S 5/2?3d 54s4p z 6 P 7/2,5/2,3/2 0)and of the inter-combination linesλ=5395 Å andλ=5433 Å (3d 54s 2 a 6 S 5/2?3d 54s4p z 8 P 7/2,5/2 0) was measured. Furthermore the resonance lines have been measured with a pulsed atomic-beam in absorption. In this case the quotient (I 0(ν)?I(ν))/I 0(ν) was recorded, whereI(ν)=I 0(ν) exp(?α(ν)d) is the observed intensity with absorption andI 0(ν) the intensity of the light source. From the hyperfine structure splitting the value of the electric quadrupole moment of Mn55 was derived to be:Q(Mn55)=+(0.35±0.05)·10?24 cm2.  相似文献   

17.
It is demonstrated that the transition in a state with two internal phases is a second order phase transition. The term internal phases means phase-like regions inside the system which are not separated by boundaries in the sense of ordinary phase boundaries, and the dimensions and shape of which as well as their properties as such are object of an equilibrium. In a generalization (quasi phases) a long ranged correlation of alternating or periodical character is considered as a typical element of the low temperature state. Such states can be described thermodynamically with the help of a new pair of variablesQ-η. The transition intoQ-η-T is generally analogous to the critical point of ordinary phase transitions inP-V-T, andη ~(?t)1/3 andC p~(?t)?2/3 with a small constant of proportionality are obtained (t=T-T u). Using the Pippard-relations in the formV-V γ=(dT γ/dP) (S-S γ) the low temperature behaviour of the entropy and density surface as a function ofP andT near the transition line can be completely described. E.g. the saturation magnetization of a ferromagnetic model is derived proportional to (?t)1/3. Under the action of a magnetic field the transition will be of first order when the saturation magnetization is achieved, without the outer field being analogous toP orQ. Should only one internal phase differ from the high temperature state we obtain an edge point (x=0 analogous to theμ 1?x-diagram of solutions) with finite jump inC p andη~({t). A possible relationship to the BCS- model of the supraconductors is indicated.  相似文献   

18.
The optical spectra and the second-harmonic generation (SHG) are studied in a noncentrosymmetric GdFe3(BO3)4 magnet. In the region of weak absorption (α~20–400 cm?1) below ~3 eV, three absorption bands are distinguished, which can be unambiguously assigned to forbidden electronic transitions from the ground 6A1 state of the Fe3+ ion to its excited states 4T1(~1.4 eV), 4T2(~2 eV), and 4A1, 4E(~2.8 eV). Intense absorption begins in the region above 3 eV (α~2–4×105 cm?1), where two bands at ~4.0 and 4.8 eV are observed, which are caused by allowed electric dipole charge-transfer transitions. The spectral features of SHG in the 1.2–3.0-eV region are explained by a change in the SHG efficiency caused by a change in the phase mismatch. It is shown that in the weak absorption region, phase matching can be achieved for SHG.  相似文献   

19.
For some purposes in statistical physics, such as, for example, the calculation of various transport coefficients, it is necessary to have expressions for the energy current operatorS and stress tensor operatorT lm . In this work it is shown that by using a simple identity, exact expressions forS andT lm which satisfy the conservation laws for the energy density? and momentum densityP, respectively, exist.S andT lm can each be written as a sum of two parts,S=S (A) +S (B) T lm =T lm (A) +T lm (B) . The “A” part is the ordinary convective or kinetic part while the “B” part is shown to be expressible as a gradient and hence its homogeneous component vanishes identically. The expressions are compared with approximate forms found in the literature. The operators are Fourier analyzed and written in terms of the field operators in the second quantization formalism.  相似文献   

20.
We deposited amorphous Bi films with a thickness between 3 and 6.5 nm at 4.2 K on top of previously deposited Co clusters having a mean size of ~4.5 nm. The Co cluster layers thickness was between 2.3 and 5 nm. In-situ electrical transport measurements were performed between 2 and 100 K. Measurements on as-prepared samples having a Bi layer thickness of 3.0 nm show hopping (tunneling) conductivity as σ(T) = σ 0 exp[?(T 0/T)1/2] above the superconducting transition temperature T C and re-entrance behavior again with hopping (tunneling) conductivity below T C . Annealing of films having a Bi layer thickness of 5.5 nm results in a decrease of resistivity, with variable-range hopping conduction behavior as σ(T) = σ 0 exp[?(T 0/T)1/3 ]. Quite different are the findings for films having a Bi layer thickness of 6.5 nm: annealing of these films results in a power-law behavior as σ(T) = σ 0 T α with α = 2/3, indicating that these films are close to a quantum critical point separating superconducting and insulating phases. A phase diagram including all experimental observations is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号