首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
The effects of N2 and CO contaminants in atmospheric-pressure argon on an arc rotating between two concentric copper electrodes has been studied using optical spectroscopy of copper lines. The axial temperature of the magnetically driven arc in Ar + %N2 was determined to be around 10,000 K for arc currents of SO to 200 A. The diffusion process of the copper vapor from the cathode was also studied. A copper density maximum 1 mm from the cathode along the arc column was found in Ar + %N2. Removal of the contaminated cathode surface layers by the arc when contaminant injection in the plasma gas was stopped was found to be a slow process with a time scale depending on the type of the gas contaminant. The presence of gas contaminant in the electrode material controls the cathode erosion mechanism and the overall arc behavior in the transition between a contaminated to a pure argon arc.  相似文献   

2.
The present modeling of a free-burning argon arc accounts for copper vapor contamination from the anode. Simulations are made for an atmospheric arc that has a length of 10 mm and an electric current of 200 amps. Predicted results for two different anode evaporation rates are compared to those from a pure argon arc with no copper vapor contamination. Copper vapor concentration, temperature, electric potential, and current density profiles are presented. Included in this analysis are radiation losses from both the argon and copper by using recently calculated net emission coefficients. It was found that evaporation of copper from the anode results in a cooling of the arc in a region close to the anode, but has an insignificant influence on the arc close to the cathode. Due to the arc flow characteristics most of the copper vapor tends to be confined to the anode region.  相似文献   

3.
The momentum and energy transfer phenomena with large temperature difference were investigated experimentally and theoretically, using an argon atmospheric thermal plasma. The plasma was generated by an arc discharge, 4–6 kW, and flowed into a water-cooled copper tube for static pressure measurements and into a copper block with the same size hole (8 mm i.d.) for measuring heat fluxes using a transient method. The argon flow rate was 2.77–8.31×10–4 kg/s. The static pressure of the plasma flow shows a different variation from that of an ordinary flow and does not decrease monotonically. The axial distributions of the numerical calculations are in fair agreement with those of the experiments, and it is concluded that the contributions of recombination and of physical properties play important roles in the behavior of the confined thermal plasma flow.  相似文献   

4.
The solubilities of solid 2,3-dimethylbutane and cyclopentene in liquid argon at a temperature of 87.3 K and in liquid nitrogen at 77.4 K have been measured by the filtration method. The hydrocarbon contents in solutions were determined using gas chromatography. GC–MS was used to identify impurities in solutes. The experimental value of the mole fraction solubility of solid 2,3-dimethyl-butane in liquid argon at 87.3 K is (8.26 ± 1.60) × 10–6 and (2.77 ± 0.94) × 10–8 in liquid nitrogen at 77.4 K. The experimental value of the mole fraction solubility of solid cyclopentene in liquid argon at 87.3 K is (5.11 ± 0.44) × 10–6 and (4.60 ± 0.76) × 10–8 in liquid nitrogen at 77.4 K. The Preston–Prausnitz method was used for calculation of the solubilities of solid hydrocarbons in liquid argon in the temperature range 84.0–110.0 K and in liquid nitrogen from 64.0 to 90.0 K. The solvent–solute interaction parameters l 12 were also calculated. At 90.0 K liquid argon is a better solvent for investigated solid hydrocarbons than is liquid nitrogen.  相似文献   

5.
The absorbance by metastable argon atoms of the Ar 696.543 nm line in the modified Grimm-type electrical discharge source was measured at different discharge conditions and at distances varying from 0.25 to 6 mm from the cathode. A uranium/argon hollow cathode lamp was used as primary source, which gave an argon gas temperature of 850 K when run at 12 mA. A maximum absorbance of 0.57 was found 3 mm from the cathode at 600 V, 80 mA. The magnitude of absorbance increases with discharge current while the position of maximum absorbance shifts away from the cathode with increase in discharge voltage. The quenching of metastable atoms by nitrogen is demonstrated.The spatial distribution of the intensity of four different types of spectral lines is shown. The approximate number densities of the different particles are 1012cm?3 for metastable argon atoms, 1016cm?3 for neutral argon atoms, 1013 cm?3 for sputtered copper atoms and 1014cm?3for electrons.  相似文献   

6.
The nitriding of titanium with argon-nitrogen (3%) and argon-nitrogen (3%)-hydrogen (2%) plasma jets at pressures of 190 torr was studied. The reaction kinetics obeyed mainly a parabolic law. The parabolic kinetic constants were 10–10–10–8 g2 cm–4 s–1, which were 2–3 orders of magnitude larger than those in R.F. discharges. From emission spectroscopy, nitrogen atoms in the excited states were observed. The nitrogen atoms can promote the nitriding reaction. The effect of the addition of hydrogen to nitrogen is also briefly discussed.  相似文献   

7.
The solubility of solid 2-methyl-1,3-butadiene (isoprene) in liquid argon at a temperature of 87.3 K and in liquid nitrogen at 77.4 K has been measured by the filtration method. The hydrocarbon contents in solutions were determined using gas chromatography. GC–MS was used to identify impurities in the solute. The experimental value of the mole fraction solubility of solid isoprene in liquid argon at 87.3 K is (1.41 ± 0.27) × 10–6 and (1.56 ± 0.36) × 10–7 in liquid nitrogen at 77.4 K. The Preston–Prausnitz method was used for calculation of the solubilities of solid hydrocarbon in liquid argon in the temperature range 84.0–110.0 K and in liquid nitrogen from 64.0 to 90.0 K. The solvent–solute interaction parameters l 12 were also calculated. At 90.0 K liquid argon is a better solvent for isoprene than is liquid nitrogen. The experimental values of the solubilities of isoprene in liquid argon and nitrogen were compared with results obtained for selected unsaturated and aromatic hydrocarbons.  相似文献   

8.
The solubilities of solid 1-hexyne in liquid argon at 87.3 and in liquid nitrogen at 77.4 K have been measured by the filtration method. The hydrocarbon contents in solutions were determined using gas chromatography. GC–MS was used to identify impurities in 1-hexyne. The experimental value of the mole fraction solubility of solid 1-hexyne in liquid argon at 87.3 K is (0.85 ± 0.19) × 10–7 and (1.25 ± 0.08) × 10–8 in liquid nitrogen at 77.4 K. The Preston–Prausnitz method was used for calculation of the solubilities of solid hydrocarbon in liquid argon in the temperature range 84.0–110.0 K and in liquid nitrogen from 64.0 to 90.0 K. The solvent–solute interaction parameters l 12 were also calculated. At 90.0 K liquid argon is a better solvent for solid 1-hexyne than is liquid nitrogen.  相似文献   

9.
The solubilities of 1-pentene ice in liquid nitrogen at a temperature of 77.4 K and in liquid argon at 87.3 K have been measured by the filtration method. The 1-pentene content in solution was determined using gas chromatography. The experimental value of the mole fraction solubility of 1-pentene ice in liquid nitrogen at 77.4 K is: (1.28±0.25)×10–7 and (4.11±0.44)×10–7 in liquid argon at 87.3 K. The Preston–Prausnitz method was used for calculation of the solubilities of 1-pentene ice in liquid nitrogen in the temperature range 64.0–90.0 K and in liquid argon in the temperature range 84.0–90.0 K. The parameters l 12 were also calculated. At 90.0 K liquid argon is the better solvent for 1-pentene ice than is liquid nitrogen.  相似文献   

10.
Experimental results are presented for electrode erosion on copper electrodes in magnetically rotated arcs in argon and helium. Measurements were also made of the arc voltage and velocity. The effects due to the contamination of the electrode surface by either a native contaminant layer (copper oxide and carbon traces) or the continuous injection of very small amounts of various diatomic gases (nitrogen, oxygen, chlorine, and carbon monoxide) into the inert plasma gases were determined. The erosion rates for pure argon were significantly higher than those for pure helium (13.5 g/C for argon and 1 g/C for helium) and with both gases, very high arc velocities were measured initially (>60 m/s for argon and >160 m/s for helium) when a natural contaminant layer was still present on the cathode. The removal of this layer resulted in lower velocities (2m/s for argon and 20m/s for helium) and higher erosion rates. The removal of the layer was much faster with argon, due possibly to higher electrode surface current densities for argon arcs.  相似文献   

11.
Spectroscopic and callorimetric measurements of temperature arid number density have been made using a 50-kW radio-frequency inductively coupled plasma (RFICP) torch operated at atmospheric pressure with maximum temperatures and electron densities near 8,1000 K and 2 x 1021 m3, respectively These measurements enabled the determination o/ the stale o/ equilibrium and of the corresponding applicability of rarious diagnostic techniques in hoth a recombining argon plasma and a recombining plasma with hydrogen or nitrogen. Results indicate that the Pure argon plasma is well described by u partial equilibrium model in which the free and bound-excited electrons are in mutual equilibrium irespective of possible departures from equilibrium with the ground state. The addition of just tenths of a percent of either atomic Hydrogen or nitrogen, however, disturbs this partial equilibrium hr argon plasmas with electron densities roughly less than 1021 m3 such that only diagnostic techniques which are independent o/ partial equilibrium assumptions can be reliably implemented.  相似文献   

12.
A procedure is proposed for the cryogenic preconcentration of hydrogen, argon, oxygen, and nitrogen in the gas chromatographic determination of their impurities in volatile inorganic hydrides. It is shown that the recovery of impurity gases approaches 100%. The limits of determination of impurity gases in hydrides with the use of the proposed procedure and a helium ionization detector are 2 × 10–6–3 × 10–5mol %, which is 5–100 times lower than the results published previously. The results are given for the determination of hydrogen, argon, oxygen, and nitrogen in silane, germane, arsine, phosphine, hydrogen sulfide, hydrogen selenide, and ammonia samples.  相似文献   

13.
Summary A method is described for the determination of shortchain aliphatic amines in ambient air based on impinger sampling in dilute H2SO4, selective enrichment across a PTFE gas membrane and quantification by gas chromatography. The enrichment step is carried out in a flow system directly connected to the chromatograph. The separation is performed on a packed column with nitrogen selective detection. The enrichment per sample volume was in the range 7.3 to 8.2 mL–1 for C1–C6 amines. Detection limits were ca 3–10 nM with enrichment of a 2.9 mL liquid sample. After impinger sampling of 5 m3 air in 10 mL absorption solution, this corresponds, to 0.4–0.8 ng/m3 (ca 0.2–0.5 ppt by volume) in air.  相似文献   

14.
Summary A combined procedure including enrichment by adsorption onto activated carbon and direct current (dc) arc emission spectrography has been investigated for elemental determination. In order to obtain reproducible volatilization of the analyte in the dc arc, the activated carbon was mixed with graphite powder and the arc operated in an argon atmosphere. The procedure has been used to determine some trace impurities in high-purity aluminium metal. The analytical error in the concentration range of 10–3–10–5% was less than 10% and the relative standard deviation was below 12%.
Emissionspektroskopische Bestimmung von Spurenelementen in Aluminium mit Gleichstrom-Lichtbogen nach ihrer vorherigen Anreicherung an Aktivkohle
  相似文献   

15.
The solubilities of solid pentane, 2-methylbutane (isopentane), and cyclopentane in liquid argon at 87.3 K have been measured by the filtration method. The C5 hydrocarbon content in solution was determined using gas chromatography. The solubilities of the C5 hydrocarbons in liquid argon at 87.3K vary from 0.61 × 10–7 mole fraction for cyclopentane, to 1.37 × 10–7 mole fraction for pentane, and 8.83 × 10–6 mole fraction for 2-methylbutane. The Preston–Prausnitz method was used for calculation of the solubilities of solid C5 hydrocarbons in liquid argon in the temperature range 84–110 K and in liquid nitrogen in the range 64–90K. The values of the solvent–solute interaction constant l 12 were also calculated.  相似文献   

16.
A mathematical model of the carbon arc process for the synthesis of fullerenes (C 60 , C 70 ) is developed. The two-dimensional model solves for the velocities, temperature, and total concentration of carbon species. The net emission coefficient method is used for the radiation term. The carbon species conservation equations consider the evaporation of carbon from the anode, cathode surface deposition, and carbon condensation. The thermodynamic and transport properties are calculated as a function of temperature and carbon mass fraction, using the method of Chapman–Enskog. Erosion rates used by the model are determined experimentally. Calculated fields of the velocities, temperatures, carbon mass fraction and current intensity are presented. Comparison is made of the behavior of the arc at 1 and 4 mm interelectrode gaps, and between operation in argon and in helium. The results of simulations provide a justification for the higher yields observed in helium compared to the argon case.  相似文献   

17.
Arc, bath, and refractory wall temperatures are measured in a pilot transferred-arc plasma furnace by atomic emission spectroscopy (AES) and multiwavelength pyrometry. Argon plasma torch and graphite electrode with nitrogen as plasma gas are both examined and compared using the steel bath as anode. With argon, a two-slope characteristic curve is measured for arc temperature, which ranges from 9000 to 25,000 K. Another trend is observed with nitrogen for temperatures in the range 8000–12,000 K. In this latter case, the bath temperature is very sensitive to arc length: more than 100 K increase results in arc length rise from 50 to 150 mm. Experimental data shows the variation of heat transfer efficiency between the two configurations, which is supported by results about surface emissivity in the spectral domain 1–15 m.  相似文献   

18.
An arsenic chemical speciation study was performed in 2000, using air filters on which total suspended particles (TSP) were collected, from the city of Huelva, a medium size city with huge industrial influence in SW Spain. Different procedures for extraction of the arsenic species were performed using water, NH2OH.HCl, and H3PO4 solutions, with either microwave or ultrasonic radiation. The best optimised extraction methods were use of 100 mmol L–1 NH2OH.HCl and 10 mmol L–1 H3PO4 and microwave radiation for 4 min. High-performance liquid chromatography coupled with hydride generation and atomic fluorescence spectrometry (HPLC–HG–AFS) was employed for determination of the arsenic species. The results from 12 TSP air filters collected on a monthly basis showed extraction was quantitative (94% with NH2OH.HCl and 86% H3PO4). Only inorganic arsenic species (arsenite and arsenate) were detected. The mean arsenite concentration was 1.2±0.3 ng m–3 (minimum 0.3 ng m–3, maximum 1.8 ng m–3). The mean arsenate concentration was 10.4±1.8 ng m–3, with greater monthly variations than arsenite (minimum 2.1 ng m–3, maximum 30.6 ng m–3). The high level of arsenic species in the TSP samples can be related to a copper smelter located in the region.  相似文献   

19.
Neutron irradiated 12-molybdocerate(IV) is evaluated as a column matrix for use in preparation of small chromatographic column type99mTc generators. Greater than 87% of the generated99mTc activity is immediately and reproducibly eluted with passing 10 cm3 of saline or chromated saline solutions through 3.0 g of molybdocerate column bed at flow rates of about 1.0 cm3/min. The elution performance of99mTc does not drastically change with increasing the drying temperature and/or the particles sixe of the column matrix in the range investigated. Saline eluent containing 5·10–5M CrO 4 2– increases the radiochemical purity of the eluate to >98% TcO 4 . Radionuclidic and chemical purities of the eluates satisfy the specifications for use in nuclear medicine.  相似文献   

20.
The effect of increased content of copper on the radiochemical composition of three skeletal imaging agents:99mTc(Sn)-methylene diphosphonate (MDP),99mTc(Sn)-pyrophosphate (PYP) and99mTc(Sn)-2,3-dicarboxypropane-1, 1-diphosphonate (DPD) was observed only in the case of99mTc(Sn)-MDP. It was found that the radiochemical purity of this radiopharmaceutical falls to about 50% when the copper content reaches about 10–5 mol dm–3. According to the results of radiochemical and biological analyses, it could be concluded that with the increase of copper content, the content of free pertechnetate rises, too. The two other radiopharmaceuticals,99mTc(Sn)-PYP and99mTc(Sn)-DPD, were found to be stable under the given experimental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号