首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We prove a dichotomy between absolute continuity and singularity of the Ginibre point process \(\mathsf {G}\) and its reduced Palm measures \(\{\mathsf {G}_{\mathbf {x}}, \mathbf {x} \in \mathbb {C}^{\ell }, \ell = 0,1,2\ldots \}\), namely, reduced Palm measures \(\mathsf {G}_{\mathbf {x}}\) and \(\mathsf {G}_{\mathbf {y}}\) for \(\mathbf {x} \in \mathbb {C}^{\ell }\) and \(\mathbf {y} \in \mathbb {C}^{n}\) are mutually absolutely continuous if and only if \(\ell = n\); they are singular each other if and only if \(\ell \not = n\). Furthermore, we give an explicit expression of the Radon–Nikodym density \(d\mathsf {G}_{\mathbf {x}}/d \mathsf {G}_{\mathbf {y}}\) for \(\mathbf {x}, \mathbf {y} \in \mathbb {C}^{\ell }\).  相似文献   

2.
For each integer \(k\ge 4\), we describe diagrammatically a positively graded Koszul algebra \(\mathbb {D}_k\) such that the category of finite dimensional \(\mathbb {D}_k\)-modules is equivalent to the category of perverse sheaves on the isotropic Grassmannian of type \(\mathrm{D}_k\) or \(\mathrm{B}_{k-1}\), constructible with respect to the Schubert stratification. The algebra is obtained by a (non-trivial) “folding” procedure from a generalized Khovanov arc algebra. Properties such as graded cellularity and explicit closed formulas for graded decomposition numbers are established by elementary tools.  相似文献   

3.
In this paper, we consider the general space–time fractional equation of the form \(\sum _{j=1}^m \lambda _j \frac{\partial ^{\nu _j}}{\partial t^{\nu _j}} w(x_1, \ldots , x_n ; t) = -c^2 \left( -\varDelta \right) ^\beta w(x_1, \ldots , x_n ; t)\), for \(\nu _j \in \left( 0,1 \right] \) and \(\beta \in \left( 0,1 \right] \) with initial condition \(w(x_1, \ldots , x_n ; 0)= \prod _{j=1}^n \delta (x_j)\). We show that the solution of the Cauchy problem above coincides with the probability density of the n-dimensional vector process \(\varvec{S}_n^{2\beta } \left( c^2 \mathcal {L}^{\nu _1, \ldots , \nu _m} (t) \right) \), \(t>0\), where \(\varvec{S}_n^{2\beta }\) is an isotropic stable process independent from \(\mathcal {L}^{\nu _1, \ldots , \nu _m}(t)\), which is the inverse of \(\mathcal {H}^{\nu _1, \ldots , \nu _m} (t) = \sum _{j=1}^m \lambda _j^{1/\nu _j} H^{\nu _j} (t)\), \(t>0\), with \(H^{\nu _j}(t)\) independent, positively skewed stable random variables of order \(\nu _j\). The problem considered includes the fractional telegraph equation as a special case as well as the governing equation of stable processes. The composition \(\varvec{S}_n^{2\beta } \left( c^2 \mathcal {L}^{\nu _1, \ldots , \nu _m} (t) \right) \), \(t>0\), supplies a probabilistic representation for the solutions of the fractional equations above and coincides for \(\beta = 1\) with the n-dimensional Brownian motion at the random time \(\mathcal {L}^{\nu _1, \ldots , \nu _m} (t)\), \(t>0\). The iterated process \(\mathfrak {L}^{\nu _1, \ldots , \nu _m}_r (t)\), \(t>0\), inverse to \(\mathfrak {H}^{\nu _1, \ldots , \nu _m}_r (t) =\sum _{j=1}^m \lambda _j^{1/\nu _j} \, _1H^{\nu _j} \left( \, _2H^{\nu _j} \left( \, _3H^{\nu _j} \left( \ldots \, _{r}H^{\nu _j} (t) \ldots \right) \right) \right) \), \(t>0\), permits us to construct the process \(\varvec{S}_n^{2\beta } \left( c^2 \mathfrak {L}^{\nu _1, \ldots , \nu _m}_r (t) \right) \), \(t>0\), the density of which solves a space-fractional equation of the form of the generalized fractional telegraph equation. For \(r \rightarrow \infty \) and \(\beta = 1\), we obtain a probability density, independent from t, which represents the multidimensional generalization of the Gauss–Laplace law and solves the equation \(\sum _{j=1}^m \lambda _j w(x_1, \ldots , x_n) = c^2 \sum _{j=1}^n \frac{\partial ^2}{\partial x_j^2} w(x_1, \ldots , x_n)\). Our analysis represents a general framework of the interplay between fractional differential equations and composition of processes of which the iterated Brownian motion is a very particular case.  相似文献   

4.
For an integer k, define poly-Euler numbers of the second kind \(\widehat{E}_n^{(k)}\) (\(n=0,1,\ldots \)) by
$$\begin{aligned} \frac{{\mathrm{Li}}_k(1-e^{-4 t})}{4\sinh t}=\sum _{n=0}^\infty \widehat{E}_n^{(k)}\frac{t^n}{n!}. \end{aligned}$$
When \(k=1\), \(\widehat{E}_n=\widehat{E}_n^{(1)}\) are Euler numbers of the second kind or complimentary Euler numbers defined by
$$\begin{aligned} \frac{t}{\sinh t}=\sum _{n=0}^\infty \widehat{E}_n\frac{t^n}{n!}. \end{aligned}$$
Euler numbers of the second kind were introduced as special cases of hypergeometric Euler numbers of the second kind in Komatsu and Zhu (Hypergeometric Euler numbers, 2016, arXiv:1612.06210), so that they would supplement hypergeometric Euler numbers. In this paper, we study generalized Euler numbers of the second kind and give several properties and applications.
  相似文献   

5.
Let E be a Banach lattice with a 1-unconditional basis \(\{e_i: i \in \mathbb {N}\}\). Denote by \(\Delta (\check{\otimes }_{n,\epsilon }E)\) (resp. \(\Delta (\check{\otimes }_{n,s,\epsilon }E)\)) the main diagonal space of the n-fold full (resp. symmetric) injective Banach space tensor product, and denote by \(\Delta (\check{\otimes }_{n,|\epsilon |}E)\) (resp. \(\Delta (\check{\otimes }_{n,s,|\epsilon |}E)\)) the main diagonal space of the n-fold full (resp. symmetric) injective Banach lattice tensor product. We show that these four main diagonal spaces are pairwise isometrically isomorphic. We also show that the tensor diagonal \(\{e_i\otimes \cdots \otimes e_i: i \in \mathbb {N}\}\) is a 1-unconditional basic sequence in both \(\check{\otimes }_{n,\epsilon }E\) and \(\check{\otimes }_{n,s,\epsilon }E\).  相似文献   

6.
For \(k,m,n\in {\mathbb {N}}\), we consider \(n^k\times n^k\) random matrices of the form
$$\begin{aligned} {\mathcal {M}}_{n,m,k}({\mathbf {y}})=\sum _{\alpha =1}^m\tau _\alpha {Y_\alpha }Y_\alpha ^T,\quad {Y}_\alpha ={\mathbf {y}}_\alpha ^{(1)}\otimes \cdots \otimes {\mathbf {y}}_\alpha ^{(k)}, \end{aligned}$$
where \(\tau _{\alpha }\), \(\alpha \in [m]\), are real numbers and \({\mathbf {y}}_\alpha ^{(j)}\), \(\alpha \in [m]\), \(j\in [k]\), are i.i.d. copies of a normalized isotropic random vector \({\mathbf {y}}\in {\mathbb {R}}^n\). For every fixed \(k\ge 1\), if the Normalized Counting Measures of \(\{\tau _{\alpha }\}_{\alpha }\) converge weakly as \(m,n\rightarrow \infty \), \(m/n^k\rightarrow c\in [0,\infty )\) and \({\mathbf {y}}\) is a good vector in the sense of Definition 1.1, then the Normalized Counting Measures of eigenvalues of \({\mathcal {M}}_{n,m,k}({\mathbf {y}})\) converge weakly in probability to a nonrandom limit found in Marchenko and Pastur (Math USSR Sb 1:457–483, 1967). For \(k=2\), we define a subclass of good vectors \({\mathbf {y}}\) for which the centered linear eigenvalue statistics \(n^{-1/2}{{\mathrm{Tr}}}\varphi ({\mathcal {M}}_{n,m,2}({\mathbf {y}}))^\circ \) converge in distribution to a Gaussian random variable, i.e., the Central Limit Theorem is valid.
  相似文献   

7.
For positive integers nk with \(3\le k\le n\), let \(X=\mathbb {F}_{2^n}\setminus \{0,1\}\), \({\mathcal {G}}=\{\{x,x+1\}:x\in X\}\), and \({\mathcal {B}}_k=\left\{ \{x_1,x_2,\ldots ,x_k\}\!\subset \!X:\sum \limits _{i=1}^kx_i=1,\ \sum \limits _{i\in I}x_i\!\ne \!1\ \mathrm{for\ any}\ \emptyset \!\ne \!I\!\subsetneqq \!\{1,2,\ldots ,k\}\right\} \). Lee et al. used the inclusion–exclusion principle to show that the triple \((X,{\mathcal {G}},{\mathcal {B}}_k)\) is a \((k,\lambda _k)\)-GDD of type \(2^{2^{n-1}-1}\) for \(k\in \{3,4,5,6,7\}\) where \(\lambda _k=\frac{\prod _{i=3}^{k-1}(2^n-2^i)}{(k-2)!}\) (Lee et al. in Des Codes Cryptogr,  https://doi.org/10.1007/s10623-017-0395-8, 2017). They conjectured that \((X,{\mathcal {G}},{\mathcal {B}}_k)\) is also a \((k,\lambda _k)\)-GDD of type \(2^{2^{n-1}-1}\) for any integer \(k\ge 8\). In this paper, we use a similar construction and counting principles to show that there is a \((k,\lambda _k)\)-GDD of type \((q^2-q)^{(q^{n-1}-1)/(q-1)}\) for any prime power q and any integers kn with \(3\le k\le n\) where \(\lambda _k=\frac{\prod _{i=3}^{k-1}(q^n-q^i)}{(k-2)!}\). Consequently, their conjecture holds. Such a method is also generalized to yield a \((k,\lambda _k)\)-GDD of type \((q^{\ell +1}-q^{\ell })^{(q^{n-\ell }-1)/(q-1)}\) where \(\lambda _k=\frac{\prod _{i=3}^{k-1}(q^n-q^{\ell +i-1})}{(k-2)!}\) and \(k+\ell \le n+1\).  相似文献   

8.
Let \(\pi _{\varphi }\) (or \(\pi _{\psi }\)) be an automorphic cuspidal representation of \(\text {GL}_{2} (\mathbb {A}_{\mathbb {Q}})\) associated to a primitive Maass cusp form \(\varphi \) (or \(\psi \)), and \(\mathrm{sym}^j \pi _{\varphi }\) be the jth symmetric power lift of \(\pi _{\varphi }\). Let \(a_{\mathrm{sym}^j \pi _{\varphi }}(n)\) denote the nth Dirichlet series coefficient of the principal L-function associated to \(\mathrm{sym}^j \pi _{\varphi }\). In this paper, we study first moments of Dirichlet series coefficients of automorphic representations \(\mathrm{sym}^3 \pi _{\varphi }\) of \(\text {GL}_{4}(\mathbb {A}_{\mathbb {Q}})\), and \(\pi _{\psi }\otimes \mathrm{sym}^2 \pi _{\varphi }\) of \(\text {GL}_{6}(\mathbb {A}_{\mathbb {Q}})\). For \(3 \le j \le 8\), estimates for \(|a_{\mathrm{sym}^j \pi _{\varphi }}(n)|\) on average over a short interval have also been established.  相似文献   

9.
Let R be a unital commutative ring, and let M be an R-module that is generated by k elements but not less. Let \(\text {E}_n(R)\) be the subgroup of \(\text {GL}_n(R)\) generated by the elementary matrices. In this paper we study the action of \(\text {E}_n(R)\) by matrix multiplication on the set \(\text {Um}_n(M)\) of unimodular rows of M of length \(n \ge k\). Assuming R is moreover Noetherian and quasi-Euclidean, e.g., R is a direct product of finitely many Euclidean rings, we show that this action is transitive if \(n > k\). We also prove that \(\text {Um}_k(M) /\text {E}_k(R)\) is equipotent with the unit group of \(R/\mathfrak {a}_1\) where \(\mathfrak {a}_1\) is the first invariant factor of M. These results encompass the well-known classification of Nielsen non-equivalent generating tuples in finitely generated Abelian groups.  相似文献   

10.
Let F be an \(L^2\)-normalized Hecke Maaß cusp form for \(\Gamma _0(N) \subseteq {\mathrm{SL}}_{n}({\mathbb {Z}})\) with Laplace eigenvalue \(\lambda _F\). If \(\Omega \) is a compact subset of \(\Gamma _0(N)\backslash {\mathrm{PGL}}_n/\mathrm{PO}_{n}\), we show the bound \(\Vert F|_{\Omega }\Vert _{\infty } \ll _{ \Omega } N^{\varepsilon } \lambda _F^{n(n-1)/8 - \delta }\) for some constant \(\delta = \delta _n> 0\) depending only on n.  相似文献   

11.
We introduce the notion of \(\mathcal {R}_{\mu }\)-classical orthogonal polynomials, where \(\mathcal {R}_{\mu }\) is the degree raising shift operator for the sequence of Laguerre polynomials of parameter \(\mu \). Then we show that the Laguerre polynomials \(L^{(\mu )}_n(x), \ \mu \ne -m, \ m\ge 0\), are the only \(\mathcal {R}_{\mu }\)-classical orthogonal polynomials.  相似文献   

12.
Let G be a reductive algebraic group over an algebraically closed field of characteristic zero, and let \(\mathfrak{h}\) be an algebraic subalgebra of the tangent Lie algebra \(\mathfrak{g}\) of G. We find all subalgebras \(\mathfrak{h}\) that have no nontrivial characters and whose centralizers \(\mathfrak{U}(\mathfrak{g})^\mathfrak{h} \) and \(P(\mathfrak{g})^\mathfrak{h} \) in the universal enveloping algebra \(\mathfrak{U}(\mathfrak{g})\) and in the associated graded algebra \(P(\mathfrak{g})\), respectively, are commutative. For all these subalgebras, we prove that \(\mathfrak{U}(\mathfrak{g})^\mathfrak{h} = \mathfrak{U}(\mathfrak{h})^\mathfrak{h} \otimes \mathfrak{U}(\mathfrak{g})^\mathfrak{g} \) and \(P(\mathfrak{g})^\mathfrak{h} = P(\mathfrak{h})^\mathfrak{h} \otimes P(\mathfrak{g})^\mathfrak{g} \). Furthermore, we obtain a criterion for the commutativity of \(\mathfrak{U}(\mathfrak{g})^\mathfrak{h} \) in terms of representation theory.  相似文献   

13.
We consider a branching random walk on \({\mathbb {R}}\) with a stationary and ergodic environment \(\xi =(\xi _n)\) indexed by time \(n\in {\mathbb {N}}\). Let \(Z_n\) be the counting measure of particles of generation n and \(\tilde{Z}_n(t)=\int \mathrm{e}^{tx}Z_n(\mathrm{d}x)\) be its Laplace transform. We show the \(L^p\) convergence rate and the uniform convergence of the martingale \(\tilde{Z}_n(t)/{\mathbb {E}}[\tilde{Z}_n(t)|\xi ]\), and establish a moderate deviation principle for the measures \(Z_n\).  相似文献   

14.
The mixed braid groups \(B_{2,n}, \ n \in \mathbb {N}\), with two fixed strands and n moving ones, are known to be related to the knot theory of certain families of 3-manifolds. In this paper, we define the mixed Hecke algebra \(\mathrm {H}_{2,n}(q)\) as the quotient of the group algebra \({\mathbb Z}\, [q^{\pm 1}] \, B_{2,n}\) over the quadratic relations of the classical Iwahori–Hecke algebra for the braiding generators. We further provide a potential basis \(\Lambda _n\) for \(\mathrm {H}_{2,n}(q)\), which we prove is a spanning set for the \(\mathbb {Z}[q^{\pm 1}]\)-additive structure of this algebra. The sets \(\Lambda _n,\ n \in \mathbb {Z}\) appear to be good candidates for an inductive basis suitable for the construction of Homflypt-type invariants for knots and links in the above 3-manifolds.  相似文献   

15.
16.
In this paper, we study the blow-up phenomena on the \(\alpha _k\)-harmonic map sequences with bounded uniformly \(\alpha _k\)-energy, denoted by \(\{u_{\alpha _k}: \alpha _k>1 \quad \text{ and } \quad \alpha _k\searrow 1\}\), from a compact Riemann surface into a compact Riemannian manifold. If the Ricci curvature of the target manifold has a positive lower bound and the indices of the \(\alpha _k\)-harmonic map sequence with respect to the corresponding \(\alpha _k\)-energy are bounded, then we can conclude that, if the blow-up phenomena occurs in the convergence of \(\{u_{\alpha _k}\}\) as \(\alpha _k\searrow 1\), the limiting necks of the convergence of the sequence consist of finite length geodesics, hence the energy identity holds true. For a harmonic map sequence \(u_k:(\Sigma ,h_k)\rightarrow N\), where the conformal class defined by \(h_k\) diverges, we also prove some similar results.  相似文献   

17.
We compute the \({\mathbb {Z}}\)-rank of the subgroup \(\widetilde{E}_K =\bigcap _{n\in {\mathbb {N}}} N_{K_n/K}(K_n^\times )\) of elements of the multiplicative group of a number field K that are norms from every finite level of the cyclotomic \({\mathbb {Z}}_\ell \)-extension \(K^c\) of K. Thus we compare its \(\ell \)-adification \({\mathbb {Z}}_\ell \otimes _{\mathbb {Z}}\widetilde{E}_K\) with the group of logarithmic units \(\widetilde{\varepsilon }_K\). By the way we point out an easy proof of the Gross–Kuz’min conjecture for \(\ell \)-undecomposed extensions of abelian fields.  相似文献   

18.
Let \((X_{n}^{\ast})\) be an independent identically distributed random sequence. Let \(M_{n}^{\ast}\) and \(m_{n}^{\ast}\) denote, respectively, the maximum and minimum of \(\{X_{1}^{\ast},\cdots,X_{n}^{\ast}\}\). Suppose that some of the random variables \(X_1^{\ast},X_2^{\ast},\cdots\) can be observed and let \(\widetilde{M}_n^{\ast}\) and \(\widetilde{m}_n^{\ast}\) denote, respectively, the maximum and minimum of the observed random variables from the set \(\{X_1^{\ast},\cdots,X_n^{\ast}\}\). In this paper, we consider the asymptotic joint limiting distribution and the almost sure limit theorems related to the random vector \((\widetilde{M}_n^{\ast}, \widetilde{m}_n^{\ast}, M_n^{\ast}, m_n^{\ast})\). The results are extended to weakly dependent stationary Gaussian sequences.  相似文献   

19.
Let \(X_n = \{x^j\}_{j=1}^n\) be a set of n points in the d-cube \({\mathbb {I}}^d:=[0,1]^d\), and \(\Phi _n = \{\varphi _j\}_{j =1}^n\) a family of n functions on \({\mathbb {I}}^d\). We consider the approximate recovery of functions f on \({{\mathbb {I}}}^d\) from the sampled values \(f(x^1), \ldots , f(x^n)\), by the linear sampling algorithm \( L_n(X_n,\Phi _n,f) := \sum _{j=1}^n f(x^j)\varphi _j. \) The error of sampling recovery is measured in the norm of the space \(L_q({\mathbb {I}}^d)\)-norm or the energy quasi-norm of the isotropic Sobolev space \(W^\gamma _q({\mathbb {I}}^d)\) for \(1 < q < \infty \) and \(\gamma > 0\). Functions f to be recovered are from the unit ball in Besov-type spaces of an anisotropic smoothness, in particular, spaces \(B^{\alpha ,\beta }_{p,\theta }\) of a “hybrid” of mixed smoothness \(\alpha > 0\) and isotropic smoothness \(\beta \in {\mathbb {R}}\), and spaces \(B^a_{p,\theta }\) of a nonuniform mixed smoothness \(a \in {\mathbb {R}}^d_+\). We constructed asymptotically optimal linear sampling algorithms \(L_n(X_n^*,\Phi _n^*,\cdot )\) on special sparse grids \(X_n^*\) and a family \(\Phi _n^*\) of linear combinations of integer or half integer translated dilations of tensor products of B-splines. We computed the asymptotic order of the error of the optimal recovery. This construction is based on B-spline quasi-interpolation representations of functions in \(B^{\alpha ,\beta }_{p,\theta }\) and \(B^a_{p,\theta }\). As consequences, we obtained the asymptotic order of optimal cubature formulas for numerical integration of functions from the unit ball of these Besov-type spaces.  相似文献   

20.
We deal with Morrey spaces on bounded domains \(\Omega \) obtained by different approaches. In particular, we consider three settings \(\mathcal {M}_{u,p}(\Omega )\), \(\mathbb {M}_{u,p}(\Omega )\) and \(\mathfrak {M}_{u,p}(\Omega )\), where \(0<p\le u<\infty \), commonly used in the literature, and study their connections and diversities. Moreover, we determine the growth envelopes \(\mathfrak {E}_{\mathsf {G}}(\mathcal {M}_{u,p}(\Omega ))\) as well as \(\mathfrak {E}_{\mathsf {G}}(\mathfrak {M}_{u,p}(\Omega ))\), and obtain some applications in terms of optimal embeddings. Surprisingly, it turns out that the interplay between p and u in the sense of whether \(\frac{n}{u}\ge \frac{1}{p}\) or \(\frac{n}{u} < \frac{1}{p}\) plays a decisive role when it comes to the behaviour of these spaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号