首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
卢晓波  张广宇 《物理学报》2015,64(7):77305-077305
石墨烯莫尔超晶格来源于六方氮化硼衬底对石墨烯的二维周期势调控. 由于这种外加的周期势对石墨烯能带具有显著的调制作用, 近年来引发了人们广泛的关注. 利用氮化硼衬底上外延的单晶石墨烯薄膜, 我们系统研究了基底调制下的莫尔超晶格以及相关的物理特性. 首先, 我们在电子端和空穴端都观测到了超晶格狄拉克点, 并且超晶格狄拉克点同本征狄拉克点类似, 都表现出绝缘体的特性. 在低温强磁场下, 可以观测到到单层石墨烯和双层石墨烯的量子霍尔效应. 并且, 从朗道扇形图中, 可以清晰的看到磁场下形成的超晶格朗道能级. 此外, 利用红外光谱的方法研究了强磁场下石墨烯超晶格体系不同朗道能级之间的跃迁, 发现这种跃迁满足有质量狄拉克费米子的行为, 对应38 meV的本征能隙. 在此基础上, 我们在380 meV位置发现一个同超晶格能量对应的光电导峰. 通过利用旋量势中三个不同的势分量对光电导峰进行拟合, 发现赝自旋杂化势起主导作用. 进一步研究表明赝自旋杂化势强度随载流子浓度的增大显著降低, 表明电子-电子相互作用引起的旋量势的重构.  相似文献   

2.
The action which describes the interaction of gravitational and electron fields is expressed in canonical form. In addition to general covariance, it exhibits the local Lorentz invariance associated with four-dimensional rotations of the local orthonormal frames. The corresponding Hamiltonian constraints are derived and their (Dirac) bracket relations given. The derivative coupling of the gravitational tetrad and spinor fields is not present in the Hamiltonian, but rather in the unusual bracket relations of the field variables in the theory. If the timelike leg of the tetrad field is fixed to be normal to the xo = constant hyper-surfaces (“time gauge”) the derivative coupling drops from the theory in the sense that the relation between the gravitational velocities and momenta is the same as when the spinor fields are absent.  相似文献   

3.
In this work, we consider a generalization of quantum electrodynamics including Lorentz violation and torsional-gravity, in the context of general spinor fields as classified in the Lounesto scheme. Singular spinor fields will be shown to be less sensitive to the Lorentz violation, as far as couplings between the spinor bilinear covariants and torsion are regarded. In addition, we prove that flagpole spinor fields do not admit minimal coupling to the torsion. In general, mass dimension four couplings are deeply affected when singular—flagpoles—spinors are considered, instead of the usual Dirac spinors. We also construct a mapping between spinors in the covariant framework and spinors in Lorentz symmetry breaking scenarios, showing how one may transliterate spinors of different classes between the two cases. Specific examples concerning the mapping of Dirac spinor fields in Lorentz violating scenarios into flagpole and flag-dipole spinors with full Lorentz invariance (including the cases of Weyl and Majorana spinors) are worked out.  相似文献   

4.
In this paper we study Dirac-Hestenes spinor fields (DHSF) on a four-dimensional Riemann-Cartan spacetime (RCST). We prove that these fields must be defined as certain equivalence classes of even sections of the Clifford bundle (over the RCST), thereby being certain particular sections of a new bundle named the spin-Clifford bundle (SCB). The conditions for the existence of the SCB are studied and are shown to be equivalent to Geroch's theorem concerning the existence of spinor structures in a Lorentzian spacetime. We introduce also the covariant and algebraic Dirac spinor fields and compare these with DHSF, showing that all three kinds of spinor fields contain the same mathematical and physical information. We clarify also the notion of (Crumeyrolle's) amorphous spinors (Dirac-Kähler spinor fields are of this type), showing that they cannot be used to describe fermionic fields. We develop a rigorous theory for the covariant derivatives of Clifford fields (sections of the Clifford bundle, CB) and of Dirac-Hestenes spinor fields. We show how to generalize the original Dirac-Hestenes equation in Minkowski spacetime for the case of RCST. Our results are obtained from a variational principle formulated through the multiform derivative approach to Lagrangian field theory in the Clifford bundle.  相似文献   

5.
It is noted that the standard black hole topology admits twisted configurations of the spinor field owing to the existence of twisted spinor bundles, and they are analyzed using the Schwarzschild black hole as an example. This is physically linked with the natural presence of Dirac monopoles on black holes and entails marked modification of the Hawking radiation for spinor particles. Pis’ma Zh. éksp. Teor. Fiz. 69, No. 9, 619–625 (10 May 1999) Published in English in the original Russian journal. Edited by Steve Torstveit.  相似文献   

6.
A formulation of the ECSK (Einstein-Cartan-Sciama-Kibble) theory with a Dirac spinor is given in terms of differential forms with values in exterior vector bundles associated with a fixed principalSL(2, )-bundle over a 4-manifold. In particular, tetrad fields are represented as soldering forms. In this setting, both the scalar curvature (Einstein-Hilbert) action density and the Dirac action density are well-defined polynomial functions of the soldering form and an independentSL(2,)-connection form. Thus, these densities are defined even where the tetrad field is degenerate (e.g. when fluctuations in the gravitational field are large). A careful analysis of the initial-value problem (in terms of an evolving triad field, SU(2)-connection, second-fundamental form and spinor field) reveals a first-order hyperbolic system of 27 evolution equations (not including the 8 evolution equations for the Dirac spinor) and 16 constraints. There are 10 conservation equations (due to local Poincaré invariance) which team up with some of the evolution equations to guarantee that the 16 constraints are preserved under the evolution.  相似文献   

7.
Flagpole and flag-dipole spinors are particular classes of spinor fields that has been recently used in different branches of theoretical physics. In this paper, we study the possibility and consequences of these spinor fields to induce an underlying fluid flow structure in the background of Kerr spacetimes. We show that flag-dipole spinor fields are solutions of the equations of motion in this context. To our knowledge, this is the second time that this class of spinor field appears as a physical solution, the first one occurring as a solution of the Dirac equation in ESK gravities.  相似文献   

8.
9.
We show how to write the Dirac and the generalized Maxwell equations (including monopoles) in the Clifford and spin-Clifford bundles (of differential forms) over space-time (either of signaturep=1,q=3 orp=3,q=1). In our approach Dirac and Maxwell fields are represented by objects of the same mathematical nature and the Dirac and Maxwell equations can then be directly compared. We show also that all presentations of the Maxwell equations in (matrix) Dirac-like spinor form appearing in the literature can be obtained by choosing particular global idempotents in the bundles referred to above. We investigate also the transformation laws under the action of the Lorentz group of Dirac and Maxwell fields (defined as algebraic spinor sections of the Clifford or spin-Clifford bundles), clearing up several misunderstandings and misconceptions found in the literature. Among the many new results, we exhibit a factorization of the Maxwell field into two-component spinor fields (Weyl spinors), which is important.  相似文献   

10.
We give a formula for the first eigenvalue of the Dirac operator acting on spinor fields of a spin compact irreducible symmetric space G/K.  相似文献   

11.
In this article a geometric process to compare spinors for different metrics is constructed. It makes possible the extension to spinor fields of a variant of the Lie derivative (called the metric Lie derivative), giving a geometric approach to a construction originally due to Yvette Kosmann. The comparison of spinor fields for two different Riemannian metrics makes the study of the variation of Dirac operators feasible. For this it is crucial to take into account the fact that the bundle in which the sections acted upon by the Dirac operators take their values is changing. We also give the formulas for the change in the eigenvalues of the Dirac operator. We conclude by giving a few cases in which an eigenvalue is stationary.

Recherche soutenue par le programme européen C.E.E. G.A.D.G.E.T. SC1-0105-C  相似文献   

12.
《Physics letters. A》2006,352(6):478-483
The one-dimensional Dirac equation with position-dependent mass is approximately solved for the generalized Hulthén potential in the case of the smooth step mass distribution. The relativistic energy spectrum and two-component spinor wavefunctions are obtained by the function analysis method. Some interesting results including the standard one-dimensional Hulthén and Woods–Saxon potentials are also discussed.  相似文献   

13.
It is shown that the classical equations of motion for particles having internal degrees of freedom, i.e., spin (Nyborg equations) allow for a geometrization on a special manifold V4. It is also shown that the equation for a harmonic function on V4 (with an additional vector bundle on which a spinor connection is defined) is a squared Dirac equation.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 10, pp. 76–80, October, 1990.  相似文献   

14.
We present the Dirac propagator as a random walk on anS D–1 sphere for Majorana spinors, even spinor space, Dirac spinors, and Chevalley-Crumeyrolle spinors built from Minkowski space. We propose the Dirac propagator constructed from Chevalley-Crumeyrolle spinors as the generators of a Markov process such that McKane-Parisi-Sourlas theorem can be applied to calculate the expectation values for functions of local times.  相似文献   

15.
A systematic study of the spinor representation by means of the fermionic physical space is accomplished and implemented. The spinor representation space is shown to be constrained by the Fierz–Pauli–Kofink identities among the spinor bilinear covariants. A robust geometric and topological structure can be manifested from the spinor space, wherein the first and second homotopy groups play prominent roles on the underlying physical properties, associated to fermionic fields. The mapping that changes spinor fields classes is then exemplified, in an Einstein–Dirac system that provides the spacetime generated by a fermion.  相似文献   

16.
Fractional derivatives have been known since the time of Leibniz and have been used in various branches of physics. The present paper shows how they can be used to generate a spinor field, much as the gradient operator generates a vector field. These spinor fields are zero kinetic energy solutions to the Dirac equation.  相似文献   

17.
We have calculated the F=1 ground state of a spinor Bose-Einstein condensate trapped harmonic potential with an applied Ioffe-Pitchard magnetic field. The vortex phase diagram is found in the plane spanned by perpendicular and longitudinal magnetic fields. The ferromagnetic condensate has two vortex phases which differ by winding number in the spinor components. The two vortices for the F(z)=-1 antiferromagnetic condensate are separated in space. Moreover, we considered an average local spin || to testify to what extent it is parallel to magnetic field (the nonadiabatic effects). We have shown that the effects are important at vortex cores.  相似文献   

18.
19.
A new double ring-shaped spherical harmonic oscillator potential is presented. The pseudospin symmetry in this system is investigated by solving the Dirac equation with equal mixture of scalar and vector potentials with opposite signs. The normalized spinor wave function and energy equation are obtained and some particular cases are discussed.   相似文献   

20.
Conditions necessary for the existence of a class of fields that can be used to construct the spinor symmetry operators for the Dirac equation in Riemannian space are specified in the present paper. The metrics of spaces with four-dimensional groups of motions in which these fields exist are indicated. A class of spaces is identified in which the Dirac equation admits no separation of variables within the framework of the definition adopted, but the algebra of symmetry of the Dirac equation satisfies the conditions of theorems of the noncommutative intergrability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号