首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Single-cell electroporation   总被引:1,自引:0,他引:1  
Single-cell electroporation (SCEP) is a relatively new technique that has emerged in the last decade or so for single-cell studies. When a large enough electric field is applied to a single cell, transient nano-pores form in the cell membrane allowing molecules to be transported into and out of the cell. Unlike bulk electroporation, in which a homogenous electric field is applied to a suspension of cells, in SCEP an electric field is created locally near a single cell. Today, single-cell-level studies are at the frontier of biochemical research, and SCEP is a promising tool in such studies. In this review, we discuss pore formation based on theoretical and experimental approaches. Current SCEP techniques using microelectrodes, micropipettes, electrolyte-filled capillaries, and microfabricated devices are all thoroughly discussed for adherent and suspended cells. SCEP has been applied in in-vivo and in-vitro studies for delivery of cell-impermeant molecules such as drugs, DNA, and siRNA, and for morphological observations.  相似文献   

2.
In vivo cell electroporation is the basis of DNA electrotransfer, an efficient method for non-viral gene therapy using naked DNA. The electric pulses have two roles, to permeabilize the target cell plasma membrane and to transport the DNA towards or across the permeabilized membrane by electrophoresis. For efficient electrotransfer, reversible undamaging target cell permeabilization is mandatory. We report the possibility to monitor in vivo cell electroporation during pulse delivery, and to adjust the electric field strength on real time, within a few microseconds after the beginning of the pulse, to ensure efficacy and safety of the procedure. A control algorithm was elaborated, implemented in a prototype device and tested in luciferase gene electrotransfer to mice muscles. Controlled pulses resulted in protection of the tissue and high levels of luciferase in gene transfer experiments where uncorrected excessive applied voltages lead to intense muscle damage and consecutive loss of luciferase gene expression.  相似文献   

3.
Atomic-resolution molecular dynamics simulations of lipid bilayers containing 7% phosphatidylserine (PS) on one leaflet are consistent with experimental observations of membrane poration and PS externalization in living cells exposed to nanosecond, megavolt-per-meter electric pulses. Nanometer-diameter aqueous pores develop within nanoseconds after application of an electric field of 450 mV/nm, and electrophoretic transport of the anionic PS headgroup along the newly constructed hydrophilic pore surface commences even while pore formation is still in progress.  相似文献   

4.
The application of electric field pulses to Chinese Hamster Ovary (CHO) cells causes membrane electroporation (MEP). If a voltage or current ramp is applied to the cellular membrane of a single CHO cell, the membrane conductance increases nonlinearly with field strength reaching saturation. In particular, the kinetics of the induced conductance changes represents the data basis for the interpretation in terms of underlying structural changes. The current/voltage characteristic is found to be continuous, but displays occasionally a sharp increase in the conductance. The step-like increases are interpreted to reflect the formation of one (or more) larger pore(s). The analysis of current clamp data yields pores of radius (r(p)) in the range of 2.5< or =r(p)/nm< or =20; the pores of the voltage clamp data are in the range of 2.5< or =r(p)/nm< or =55. The larger pores occur predominantly during hyperpolarising and less frequently during depolarising conditions, respectively. The different kinetics of pore formation in the hyperpolarising condition, where the inward field increases, and the depolarising condition, where the inward field first decreases and then increases in the opposite direction, suggests structural asymmetry with respect to the direction of the electric membrane field. At the required higher voltage, the effect of the resting potential is negligibly small.  相似文献   

5.
Transmembrane lipid translocation (flip-flop) processes are involved in a variety of properties and functions of cell membranes, such as membrane asymmetry and programmed cell death. Yet, flip-flops are one of the least understood dynamical processes in membranes. In this work, we elucidate the molecular mechanism of pore-mediated transmembrane lipid translocation (flip-flop) acquired from extensive atomistic molecular dynamics simulations. On the basis of 50 successful flip-flop events resolved in atomic detail, we demonstrate that lipid flip-flops may spontaneously occur in protein-free phospholipid membranes under physiological conditions through transient water pores on a time scale of tens of nanoseconds. While the formation of a water pore is induced here by a transmembrane ion density gradient, the particular way by which the pore is formed is irrelevant for the reported flip-flop mechanism: the appearance of a transient pore (defect) in the membrane inevitably leads to diffusive translocation of lipids through the pore, which is driven by thermal fluctuations. Our findings strongly support the idea that the formation of membrane defects in terms of water pores is the rate-limiting step in the process of transmembrane lipid flip-flop, which, on average, requires several hours. The findings are consistent with available experimental and computational data and provide a view to interpret experimental observations. For example, the simulation results provide a molecular-level explanation in terms of pores for the experimentally observed fact that the exposure of lipid membranes to electric field pulses considerably reduces the time required for lipid flip-flops.  相似文献   

6.
Perturbation of human skin due to application of high voltage   总被引:6,自引:0,他引:6  
Electroporation is believed to be the effect that greatly enhances the transport of water-soluble molecules across the stratum corneum (SC) by application of short high voltage pulses. However, electroporation was originally a phenomenon investigated at the level of cell and model membranes, which is only partially comparable to the complicated structure of the stratum corneum. Here, we show, that electroporation is accompanied by other effects, which may be primarily involved in creation of new pathways and altering existing pathways, respectively. Experimental evidence shows that the dramatic increase in skin permeability is due to synergistic effect of electric field and heating by high local current density. Heating starts at small spots, not related to a visible skin structure and results in a propagating heat front. The phase transition of the SC lipids plays a major role in skin permeability during the pulse. The permeability after a high voltage pulse correlates well with the surface area showing a permanent low electrical resistance after pulsing. The main transport of water-soluble molecules is facilitated by the electric field due to the electrophoretic driving force in conjunction with the high permeability due to the breakdown of the multilamellar system of the SC lipids.  相似文献   

7.
8.
Electroporation is characterized by formation of structural changes within the cell membrane, which are caused by the presence of electrical field. It is believed that "pores" are mostly formed in lipid bilayer structure; if so, planar lipid bilayer represents a suitable model for experimental and theoretical studies of cell membrane electroporation. The breakdown voltage of the lipid bilayer is usually determined by repeatedly applying a rectangular voltage pulse. The amplitude of the voltage pulse is incremented in small steps until the breakdown of the bilayer is obtained. Using such a protocol each bilayer is exposed to a voltage pulse many times and the number of applied voltage pulses is not known in advance. Such a pre-treatment of the lipid bilayer affects its stability and consequently the breakdown voltage of the lipid bilayer. The aim of this study is to examine an alternative approach for determination of the lipid bilayer breakdown voltage by linear rising voltage signal. Different slopes of linear rising signal have been used in our experiments (POPC lipids; folding method for forming in the salt solution of 100 mM KCl). The breakdown voltage depends on the slope of the linear rising signal. Results show that gently sloping voltage signal electroporates the lipid bilayer at a lower voltage then steep voltage signal. Linear rising signal with gentle slope can be considered as having longer pre-treatment of the lipid bilayer; thus, the corresponding breakdown voltage is lower. With decreasing the slope of linear rising signal, minimal breakdown voltage for specific lipid bilayer can be determined. Based on our results, we suggest determination of lipid bilayer breakdown voltage by linear rising signal. Better reproducibility and lower scattering are obtained due to the fact that each bilayer is exposed to electroporation treatment only once. Moreover, minimal breakdown voltage for specific lipid bilayer can be determined.  相似文献   

9.
Electroporation is becoming an increasingly important tool for introducing biologically active compounds into living cells, yet the effectiveness of this technique can be low, particularly in vivo. One way to improve the success rate is to optimize the shock protocols, but experimental studies are costly, time consuming, and yield only an indirect measurement of pore creation. Alternatively, this study models electroporation in two geometries, a space-clamped membrane and a single cell, and investigates the effects of pulse duration, frequency, shape, and strength. The creation of pores is described by a first order differential equation derived from the Smoluchowski equation. Both the membrane and the cell are exposed to monophasic and biphasic shocks of varying duration (membrane, 10 micros-100 s; cell, 0.1 micros-200 ms) and to trains of monophasic and biphasic pulses of varying frequency (membrane, 50 Hz-4 kHz; cell, 200 kHz-6 MHz). The effectiveness of each shock is measured by the fractional pore area (FPA). The results indicate that FPA is sensitive to shock duration only in a very narrow range (membrane, approximately 1 ms; cell, approximately 0.25 micros). In contrast, FPA is sensitive to shock strength and frequency of the pulse train, increasing linearly with shock strength and decreasing slowly with frequency. In all cases, monophasic shocks were at least as effective as biphasic shocks, implying that varying the strength and frequency of a monophasic pulse train is the most effective way to control the creation of pores.  相似文献   

10.
A wide variety of physical and biological factors are involved in determining the success of electrofusion procedures. The optimal conditions for the fusion and survival of mouse two-cell embryos have been determined by manipulating the electric field parameters, medium composition, degree of cell-cell contact and the relationship between current flow and membrane orientation. The experiments demonstrate that the events which initiate embryonic cell fusion are dependent upon a closely defined electric field strength and associated pulse duration. We show further that high cell fusion rates are the product of an inverse relationship between dc field strength and pulse duration and the initiation of pore formation by electric field application is insufficient to induce successful fusion unless accompanied by appropriate post-pulse medium and adequate membrane contact. Manipulation of the direction of current flow, membrane orientation and degree of cell-cell contact have shown that the initiation of pore formation occurs across the entire surface of the cell membrane.  相似文献   

11.
We have employed atomic-scale molecular dynamics simulations to address ion transport through transient water pores in phospholipid membranes. The formation of a water pore is induced by a transmembrane ionic charge imbalance, which gives rise to a significant potential difference across the membrane. The subsequent transport of ions through the pore discharges the transmembrane potential and makes the water pore metastable, leading eventually to its sealing. The findings highlight the importance of ionic charge fluctuations in spontaneous pore formation and their role in ion leakage through protein-free lipid membranes.  相似文献   

12.
The artificial electrotransfer of bioactive agents such as drugs, peptides or therapeutical nucleic acids and oligonucleotides by membrane electroporation (MEP) into single cells and tissue cells requires knowledge of the optimum ranges of the voltage, pulse duration and frequency of the applied pulses. For clinical use, the classical electroporators appear to necessitate some tissue specific presetting of the pulse parameters at the high voltage generator, before the actual therapeutic pulsing is applied. The optimum pulse parameters may be derived from the kinetic normal mode analysis of the current relaxations due to a voltage step (rectangular pulse). Here, the novel method of trapezium test pulses is proposed to rapidly assess the current (I)/voltage (U) characteristics (IUC). The analysis yields practical values for the voltage U(app) between a given electrode distance and pulse duration t(E) of rectangular high voltage (HV) pulses, to be preset for an effective in vivo electroporation of mouse subcutaneous tumors, clamped between two planar plate electrodes of stainless steel. The IUC of the trapezium pulse compares well with the IUC of rectangular pulses of increasing amplitudes. The trapezium pulse phase (s) of constant voltage and 3 ms duration, following the rising ramp phase (r), yields a current relaxation which is similar to the current relaxation during a rectangular pulse of similar duration. The fit of the current relaxation of the trapezium phase (s) to an exponential function and the IUC can be used to estimate the maximum current at a given voltage. The IUC of the falling edge (phase f) of the trapezium pulse serves to estimate the minimum voltage for the exploration of the long-lived electroporation membrane states with consecutive low-voltage (LV) pulses of longer duration, to eventually enhance electrophoretic uptake of ionic substances, initiated by the preceding HV pulses.  相似文献   

13.
In this work, cell adhesion and electroporation effects have been studied through impedance measurements. Chinese Hamster Ovary (CHO-K1) cells have been plated and grown adherent to multi-electrode arrays and then stimulated to obtain the electroporation. We used Electrochemical Impedance Spectroscopy (EIS) measurements to analyze the impedance variation that occurs with cell adhesion and, consequently, to obtain the intrinsic electrical parameters of the electrode-cell interface through a lumped parameter model. The whole model allows to estimate the correction factor β and the sealing resistance Rseal, both dependent on the cell coverage and adhesion. The electroporation has been performed after cell adhesion, using a custom stimulation bench, able to evaluate the cell-electrode coupling and to stimulate an individually addressable site. By performing EIS measurements, before and after the electroporation, cell status, adhesion and membrane resistance can be detected. From measurements, an impedance decrease as a function of pulse amplitude can be noted. The proposed equivalent electrical model allows to evaluate the variation in membrane conductance due to pores formation. Moreover, average pore radius between 0.5 nm and 2.2 nm, increasing with pulse amplitude, was estimated.  相似文献   

14.
The question: is cell electrofusion mediated by a long-lived fusogenic state or does the electric field fuse the membranes directly, was investigated by a new centrifugal approach. Mouse L-cells were brought into contact by a special centrifuge device allowing high voltage pulses to be applied upon the cell pellet during centrifugation. Both stages, membrane contact and electrical breakdown of cell membranes, were controlled. The degree of cell-to-cell compression and corresponding intermembrane contact area were estimated by measuring the low-voltage resistance R of the cell pellet which grows sharply with the increase of centripetal acceleration G. The extent of electrical membrane poration and critical pulse parameters were detected by recording the breakdown current. Supercritical pulse delivery to a cell pellet compressed by intensive centrifugation (400–600 g) leads to polycaryon mass formation. The pulse amplitude required for efficient fusion (2–3 kV/cm, 20–50 μs: fusion index F ∼ 25–35%) was found to be several times higher than the amplitude sufficient to induce noticeable breakdown (300 V/cm). The shapes of the F(G) and R(G) dependences were similar, which revealed a correlation between the area of intermembrane contact and fusion probability. Fusion was negligible if the moment of pulsation and the period of intensive centrifugation were separated in time. The data obtained allow us to conclude that in the case of fusion of L-cells the action of the electric field is not mediated by any long-lived fusogenic state. The process of the common membrane surface formation driven directly by the electric field is discussed.  相似文献   

15.
Electroporation is a phenomenon during which exposure of a cell to high voltage electric pulses results in a significant increase in its membrane permeability. Aside from the fact that after the electroporation the cell membrane becomes more permeable, the cells' geometrical and electrical properties change considerably. These changes enable use of the force on dielectric particles exposed to non-uniform electric field (dielectrophoresis) for separation of non-electroporated and electroporated cells. This paper reports the results of an attempt to separate non-electroporated and electroporated cells by means of dielectrophoresis. In several experiments we managed to separate the non-electroporated and electroporated cells suspended in a medium with conductivity 0.174 S/m by exposing them to a non-uniform electric field at a frequency of 2 MHz. The behaviour of electroporated cells exposed to dielectrophoresis raises the presumption that in addition to conductivity, considerable changes in membrane permittivity occur after the electroporation.  相似文献   

16.
Lin YC  Li M  Wu CC 《Lab on a chip》2004,4(2):104-108
Simulation and experimental demonstration of the in vitro gene delivery enhancement using electrostatic forces and electroporation (EP) microchips were conducted. Electroporation is a technique with which DNA molecules can be delivered into cells using electric field pulses. This study demonstrates that plasmid DNA can be attracted to the cell surfaces at the specific regions using an electrostatic force. Therefore, the DNA concentration on the cell surface is dramatically increased, which highly enhances the gene transfection efficiency compared to that without an attracting-electric field. The electrostatic force can be designed into specific regions, where the DNA plasmids are attracted to, to provide the region-targeting function. In this micro-device, the top electrode and the interdigitated electrodes provided the DNA attracting-electric field, and the interdigitated electrodes provided adequate electric fields for the electroporation process on the chip surface. Using the EP microchip, cells could be manipulated in situ without detachment if adherent cells were used for electroporation. Five different cells of two different types, primary cell and cell line, were successfully transfected under multi-pulse or single pulse electric field stimulation without applying an attracting-electric field. This study simulated and analyzed the electric field distributions at the DNA attracting and electroporation processes, and successfully demonstrated that the electrostatic force attracted DNA plasmids to specific regions and highly enhanced the gene delivery. In summary, this EP microchip should provide many potential applications for gene therapy.  相似文献   

17.
Electroporation (EP) is one of the successful physical methods for intracellular drug delivery, which temporarily permeabilizes plasma membrane by exposing cells to electric pulses. Orientation of cells in electric field is important for electroporation and, consequently, for transport of molecules through permeabilized plasma membrane. Uptake of molecules after electroporation are the greatest at poles of cells facing electrodes and is often asymmetrical. However, asymmetry reported was inconsistent and inconclusive—in different reports it was either preferentially anodal or cathodal. We investigated the asymmetry of polar uptake of calcium ions after electroporation with electric pulses of different durations, as the orientation of elongated cells affects electroporation to a different extent when using electric pulses of different durations in the range of 100 ns to 100 µs. The results show that with 1, 10, and 100 µs pulses, the uptake of calcium ions is greater at the pole closer to the cathode than at the pole closer to the anode. With shorter 100 ns pulses, the asymmetry is not observed. A different extent of electroporation at different parts of elongated cells, such as muscle or cardiac cells, may have an impact on electroporation-based treatments such as drug delivery, pulse-field ablation, and gene electrotransfection.  相似文献   

18.
Local pulsed electric field application is a method for improving non-viral gene delivery. Mechanisms of the improvement include electroporation and electrophoresis. To understand how electrophoresis affects pDNA delivery in vivo, we quantified the magnitude of electric field-induced interstitial transport of pDNA in 4T1 and B16.F10 tumors implanted in mouse dorsal skin-fold chambers. Four different electric pulse sequences were used in this study, each consisted of 10 identical pulses that were 100 or 400 V/cm in strength and 20 or 50 ms in duration. The interval between consecutive pulses was 1 s. The largest distance of transport was obtained with the 400 V/cm and 50 ms pulse, and was 0.23 and 0.22 microm/pulse in 4T1 and B16.F10 tumors, respectively. There were no significant differences in transport distances between 4T1 and B16.F10 tumors. Results from in vivo mapping and numerical simulations revealed an approximately uniform intratumoral electric field that was predominantly in the direction of the applied field. The data in the study suggested that interstitial transport of pDNA induced by a sequence of ten electric pulses was ineffective for macroscopic delivery of genes in tumors. However, the induced transport was more efficient than passive diffusion.  相似文献   

19.
Electroporation (EP) is one of the most important physical methods in biotechnology, which employs electrical pulses to transiently permeabilize cell membranes. In this study, a new micro pulsed radio-frequency electroporation cell (microPREP) chip was fabricated using a lift-off technique and SU-8 photolithography. The biological tests were carried out using three different plant protoplasts (cabbage, spinach and oil rape) on the micro EP chip and a pulsed RF electric field was applied to the microchip. The variations of fluorescent intensity and cell viability as functions of the electric pulse amplitude and duration time during the electroporation process were studied in detail at the single-cell level. Using such chip design and test method, one can easily optimize the efficiency and cell viability. Also, a large amount of statistical data can be quickly obtained. Finally, results of this parametric study were presented in the "phase diagram", from which the critical electric field for inducing single-cell electroporation under different conditions can be clearly determined.  相似文献   

20.
Electroporation, the increase in the permeability of bilayer lipid membranes by the application of high voltage pulses, has the potential to serve as a mechanism for transdermal drug delivery. However, the associated current flow through the skin will increase the skin temperature and might affect nearby epidermal cells, lipid structure or even transported therapeutic molecules. Here, thermal conduction and thermal convection models are used to provide upper and lower bounds on the local temperature rise, as well as the thermal damage, during electroporation from exponential voltage pulses (70 V maximum) with a 1 ms and a 10 ms pulse time constant. The peak temperature rise predicted by the conduction model ranges from 19 degrees C for a 1 ms time constant pulse to 70 degrees C for the 10 ms time constant pulse. The convection (mass transport) model predicts a 18 degrees C peak rise for 1 ms time constant pulses and a 51 degrees C peak rise for a 10 ms time constant pulse. The convection model compares more favorably with previous experimental studies and companion observations of the local temperature rise during electroporation. Therefore, it is expected that skin electroporation can be employed at a level which is able to transport molecules transdermally without causing significant thermal damage to the tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号