首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A synchronously pumped femtosecond optical parametric oscillator based on congruent MgO-doped periodically poled lithium niobate (c-MgO:PPLN) is reported. The system, operating at room temperature, was pumped by a mode-locked Ti:sapphire laser. The wavelengths of the signal and idler waves were tuned from 870 nm to 1.54 μm and 1.58 to 5.67 μm, respectively, by changing the pump wavelength, the grating period or the cavity length. Pumped by 1.1 W of 755 nm laser radiation, the OPO generated 310 mW of 1080 nm radiation. This signal output corresponds to a total conversion efficiency of 50%. Without dispersion compensation the OPO generated phase-modulated signal pulses of 200 fs duration. Besides the OPO of c-MgO:PPLN, an OPO of stoichiometric (s) MgO:PPLN was investigated. Because of the reduced sensitivity to photorefractive damage, both crystals allowed efficient OPO operation at room temperature. Received: 19 August 2002 / Revised version: 11 December 2002 / Published online: 19 March 2003 RID="*" ID="*"Corresponding author. Fax: +49-631/205-3906, E-mail: andres@physik.uni-kl.de  相似文献   

2.
We report on an injection-seeded 9.5-W 82-MHz-repetition-rate picosecond optical parametric generator (OPG) based on a 55 mm long crystal of periodically poled lithium niobate (PPLN) with a quasi-phase-matching (QPM) grating period of 29.75 μm. The OPG is excited by a continuously diode pumped mode-locked picosecond Nd:YVO4 oscillator-amplifier system. The laser system generates 7 ps pulses with a repetition rate of 82.3 MHz and an average power of 24 W. Without injection-seeding the total average output power of the OPG is 8.9 W, which corresponds to an internal conversion efficiency of 50%. The wavelengths of the signal and idler waves were tuned in the range 1.57–1.64 μm and 3.03–3.3 μm, respectively, by changing the crystal temperature from 150 °C to 250 °C. Injection seeding of the OPG at 1.58 μm with 4 mW of single frequency continuous-wave radiation of a distributed-feedback (DFB) diode laser increases the OPG output to 9.5 W (53% conversion efficiency). The injection seeding increases the pulse duration and reduces the spectral bandwidth. When pumped by 10 W of 1.06 μm laser radiation, the duration of the signal pulses increased from 3.6 ps to 5.5 ps while the spectral bandwidth is reduced from 4.5 nm to 0.85 nm. Seeding thus improved the time-bandwidth product from 1.98 to a value of 0.56, much closer to the Fourier limit. Received: 29 April 2002 / Published online: 8 August 2002  相似文献   

3.
Received: 15 December 1997/Revised version: 27 April 1998  相似文献   

4.
We report on an optical parametric amplifier (OPA) based on two potassium titanyl phosphate (KTP) crystals in a walk-off compensating geometry. An Nd:YLF regenerative amplifier at a 1-kHz repetition rate serves as the pump source. The seed beam is delivered by a synchronously pumped frequency-stabilized optical parametric oscillator (OPO) based on periodically poled lithium niobate (PPLN). At pump intensities of about 7 GW/cm2 large amplification factors of more than 104 were achieved, resulting in pulse energies of more than 450 μJ and 350 μJ for the signal and idler pulses, respectively, at a 1-kHz repetition rate. In the saturation regime the time–bandwidth product increases from two to three times the Fourier limit, with a pulse duration of 105 ps and a bandwidth of 12.7 GHz at the highest intensities employed. Received: 2 November 2001 / Published online: 14 March 2002  相似文献   

5.
6.
Optical parametric oscillator (OPO) and amplifier (OPA) devices are useful for spectroscopic sensing of chemical processes in laboratory, industrial, and environmental settings. This is particularly true of nanosecond-pulsed, continuously tunable OPO/OPA systems, for which we survey a variety of instrumental strategies, together with actual spectroscopic measurements. The relative merits of OPO wavelength control by intracavity gratings and by injection seeding are considered. A major innovation comprises an OPO with a ring cavity based on periodically poled lithium niobate (PPLN) and injection-seeded by a single-mode tunable diode laser (TDL). Active cavity control by an ‘intensity dip’ method yields an optical bandwidth ≤0.005 cm-1 (150 MHz), which compares favourably with the performance of advanced grating-tuned OPO/OPA systems. A novel adaptation of this TDL-seeded PPLN OPO employs a compact, inexpensive multimode pump laser, with which it is still possible to obtain continuously tunable single-mode signal output. Cavity ringdown (CRD) spectroscopy also figures prominently, with infrared (IR) CRD spectra from both grating-scanned and TDL-seeded OPOs reported. Finally, a tunable ultraviolet (UV) source, combining a TDL-seeded passive-cavity OPO and a sum-frequency generation stage, is developed for measurements of time-resolved IR-UV double resonance spectra of acetylene and UV laser-induced fluorescence spectra of nitric oxide. Received: 28 March 2000 / Published online: 13 September 2000  相似文献   

7.
We report on a numerical analysis of the temporal and spatial beam properties of nanosecond optical parametric oscillators (OPOs). The analysis is performed for a 355-nm-pumped critically phase-matched OPO of beta-barium borate. The calculations provide detailed information on the dependence of the OPO beam quality (measured by the quality factor M 2) on pump energy. An important result is the strong increase of the M 2 value for pump energies exceeding 1–2 times the energy at threshold. Furthermore, a temporal analysis of single OPO pulses indicates that the M 2 value strongly increases during the first few nanoseconds of the OPO oscillation. This increase is understood by considering the temporal dynamics of the spatial profiles of the OPO signal beam and the depleted pump radiation. Received: 1 April 1999 / Revised version: 26 July 1999 / Published online: 20 October 1999  相似文献   

8.
4 (RTA), which provides a threshold pump power of 16 mW. The maximum signal wave power is 23 mW at a wavelength of 1243 nm. The spectral bandwidth of the signal wave is less than 750 kHz. Received: 3 February 1998  相似文献   

9.
We report on a femtosecond optical parametric oscillator (OPO) with a repetition rate of 1 GHz, which is 12 times that of the pump laser used. We also introduce a novel method for operating an OPO with a high harmonic repetition rate which is not determined by the cavity length of the OPO, but rather the cavity length difference between the OPO and its pump laser. Operation of an OPO at 4-times the harmonic repetition rate has been carried out to show the feasibility of this method. The new approach paves the way for constructing a femtosecond OPO working at repetition rates of 10 GHz, or higher, when the pump laser used has a relatively low repetition rate. Received: 26 October 2001 / Revised version: 11 Januar 2002 / Published online: 14 March 2002  相似文献   

10.
Since the inception of the laser, pulse duration has been continuously decreased by the use of a variety of techniques: Q-switching, mode-locking, and pulse compression. We would like to present a new technique based on the addition of laser sub-harmonic, ALS, that allows the production of a single-cycle pulse with single-femtosecond pulse duration. This simple technique takes advantage of the recent progress made in the generation of a few optical cycles and in optical parametric amplification. Received: 10 March 1999 / Revised version: 17 May 1999 / Published online: 30 July 1999  相似文献   

11.
We fabricated and characterized periodically poled MgO:LiNbO3 device with five gratings in 0.5 μm increments from 29 μm to 31 μm for optical parametric oscillator (OPO). The OPO operation threshold is 30 μJ using this device with a 50 mm effective length. At 560 mW input pump power, we have achieved 300 mW of the total output power, and the conversion efficiency is 54%. Multi-periods and temperatures tuning of the OPO yields a signal wavelength range from 1.45 to 1.72 μm and an idler wavelength range from 2.8 to 4.05 μm in the mid infrared.  相似文献   

12.
4 (KTP) optical parametric oscillators (OPOs) with pump and idler resonant cavities. With a linear two-mirror cavity the pump power at threshold was 70 mW. The single-frequency signal and idler output wavelengths were tuned in the range of 1025 to 1040 nm and 1250 to 1380 nm by tuning the dye laser in the range of 565 to 588 nm. With a dual three-mirror cavity the threshold was 135 mW. Pumped by 500 mW of 578 nm radiation the 1040 nm single-frequency signal wave output power was 84 mW. Power and frequency stable operation with a spectral bandwidth of less than 9 MHz was obtained by piezo-electrically locking the length of the pump resonant cavity to the dye laser wavelength. Similar performance was achieved by placing the idler resonant OPO inside the resonator of the dye laser. With this system power stable and single-frequency operation was achieved with a spectral bandwidth of less than 11 MHz for the idler wave. Received: 3 February 1998/Revised version: 9 March 1998  相似文献   

13.
We report the development and application of pulsed optical parametric generator (OPG) and optical parametric oscillator (OPO) systems that are injection seeded with near-infrared distributed feedback diode lasers. The OPG is injection seeded at the idler wavelength without the use of a resonant cavity. Two counter-rotating, beta-barium-borate (β-BBO) crystals are used in the OPG. These crystals are pumped by the third harmonic, 355-nm output of an injection-seeded Nd:YAG laser. An OPO version of the system has also been developed by placing two flat mirrors around the two β-BBO crystals to form a feedback cavity at the signal wavelength. The OPO cavity length is not actively controlled. The output signal beam from the OPG or OPO is amplified using an optical parametric amplifier (OPA) stage with four β-BBO crystals. The frequency bandwidths of the signal and idler laser radiation from OPG/OPA and OPO/OPA systems have been determined to be slightly greater than 200 MHz. The temporal pulses from each system are smooth and near-Gaussian. High-resolution optical absorption measurements of acetylene (C2H2) were performed as another check of the frequency spectrum of the idler beam. The frequency-doubled signal output of the OPO/OPA system was used to perform high-resolution, single-photon, laser-induced fluorescence (LIF) spectroscopic studies of the (0,0) vibrational band of the A 2Σ+X 2Π electronic transition of nitric oxide (NO) at low pressure. Excellent agreement was obtained between the theory and the experiment. The signal output of the OPG/OPA system was also used for sub-Doppler, two-photon LIF spectroscopic studies of the same vibration–rotation manifold of NO.This revised version was published online in August 2005 with a corrected cover date.  相似文献   

14.
We report a new source of high-repetition rate and widely tunable picosecond pulses for the near infrared. A singly resonant, cw, picosecond optical parametric oscillator based on temperature-tuned LiB3O5 and synchronously pumped by 1.8 ps pulses from a self-mode-locked Ti:Sapphire laser is demonstrated. The oscillator can provide average output powers of up to 90 mW under non-critical type-I phase matching at a pulse repetition rate of 81 MHz. Without dispersion compensation, transform-limited signal pulses with 720 fs durations have been generated at 1.2 times threshold. With the available mirror set, signal tuning over 1.374–1.530 µm and idler tuning over 1.676–1.828 µm is demonstrated for a range of pump wavelengths and phase-matching temperatures. With additional mirrors, continuous tuning throughout 1–2.7 µm should be readily attainable with a single LiB3O5 crystal.  相似文献   

15.
4 that is continuously tunable in the signal wavelength from 1.375 to 1.575 μm and with a maximum output power of 110 mW. The signal pulses were produced with nearly transform-limited duration as short as 215 fs. Received: 27 August 1998/Revised version: 14 October 1998  相似文献   

16.
Received: 29 December 1997/Revised version: 6 February 1998  相似文献   

17.
The phase-matching condition in a fiber is discussed. A balance among the different orders of fiber dispersion can be found to achieve a widely tuning modulation instability gain for pumping around the normal dispersion regime. Three coupled nonlinear wave equations are used to simulate the femtosecond fiber optical parametric oscillator. The numerical results show that, through appropriate choice of dispersion, femtosecond pulses with a 180-nm tunable range can be generated when pump wavelength near a fiber’s zero-dispersion wavelength is tuned only 7 nm. Further tuning is limited by the walk-off between the pump and the signal pulses.  相似文献   

18.
Recent work on the development of high-repetition-rate, synchronously pumped picosecond and femtosecond Optical Parametric Oscillators (OPOs) is reviewed. With KTP, BBO or LBO crystals and solid-state pumps such as cw mode-locked Ti:Sapphire, Nd:YAG or Nd:YLF lasers, the singly resonant OPOs or their nonlinear optical accessories yield pulses as short as 40 fs, average powers up to hundreds of milliwatts, and tunability from 200 nm to > 10 µm.  相似文献   

19.
We report on optical parametric oscillators (OPOs) based on large aperture periodically poled KTiOPO4 (PPKTP) and RbTiOAsO4 (PPRTA) pumped with high pulse energy and high average power Q-switched solid-state lasers. The OPOs were pumped with 1064-nm pulses of a diode-pumped Nd:YVO4 laser at 20 kHz repetition rate. The emitted signal wavelengths were 1.72 μm and 1.58 μm and the idler wavelengths were 2.79 μm and 3.26 μm, respectively. Pumping the PPKTP OPO with 7.2 W and the PPRTA OPO with 8 W average power, 2 W and 1.3 W total OPO output powers were generated. Two-dimensional measurements of the total OPO output power, the signal wavelength and the signal bandwidth in dependence on the crystal location indicated a good uniformity of the quasiphasematching structure over the entire 3-mm-thick crystals. This allowed pumping with larger pump beams and therefore with pulse energies of tens of millijoules. Pumping with different flash-lamp-pumped lasers, good OPO performance and high output pulse energies could be achieved for all pump lasers. Maximum input pulse energies of 56 mJ gave output pulse energies of as much as 18 mJ. The temperature tuning behaviors of both OPOs were measured, showing excellent agreement with calculated temperature tuning curves. New equations for temperature dispersion in RTA are presented. These results show that large-aperture PPKTP and PPRTA crystals are well suited for tunable nanosecond OPO operation with multi-watt average pump power and several tens of millijoules pump pulse energies. Received: 7 September 2001 / Published online: 7 November 2001  相似文献   

20.
Magnesium-oxide-doped stoichiometric lithium niobate has been produced using the technique of top-seeded solution growth from a lithium-rich melt. Optical tests, performed with a combination of argon-ion laser lines, have confirmed a previously published result (at 532 nm) that this material has superior resistance to photorefractive damage. This material has been shown, for the first time, to be amenable to periodic poling. Optical parametric oscillator tests have shown that this material maintains the advantages of periodically poled, congruent, un-doped lithium niobate while showing no evidence of photorefractive damage under typical operating conditions. Operating wavelengths as a function of quasi-phase-matching period and temperature have been measured for the optical parametric oscillator, providing useful new information about refractive-index dispersion in this material. This work establishes periodically poled, magnesium-oxide-doped stoichiometric lithium niobate as a viable material for nonlinear optics. Received: 28 June 2000 / Revised version: 12 September 2000 / Published online: 7 February 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号