首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 886 毫秒
1.
Pharmaceutical production typically involves multiple reaction steps with separations between successive reactions. Two processes which complicate the transition from batch to continuous operation in multistep synthesis are solvent exchange (especially high‐boiling‐ to low‐boiling‐point solvent), and catalyst separation. Demonstrated here is membrane separation as an enabling platform for undertaking these processes during continuous operation. Two consecutive reactions are performed in different solvents, with catalyst separation and inter‐reaction solvent exchange achieved by continuous flow membrane units. A Heck coupling reaction is performed in N,N‐dimethylformamide (DMF) in a continuous membrane reactor which retains the catalyst. The Heck reaction product undergoes solvent exchange in a counter‐current membrane system where DMF is continuously replaced by ethanol. After exchange the product dissolved in ethanol passes through a column packed with an iron catalyst, and undergoes reduction (>99 % yield).  相似文献   

2.
The oxidation of para‐xylene to terephthalic acid has been commercialised as the AMOCO process(Co/Mn/Br) that uses a homogeneous catalyst of cobalt and manganese together with a corrosive bromide compound as a promoter. This process is conducted in acidic medium at a high tempera‐ture(175–225 °C). Concerns over environmental and safety issues have driven studies to find mild‐er oxidation reactions of para‐xylene. This review discussed past and current progress in the oxida‐tion of para‐xylene process. The discussion concentrates on the approach of green chemistry in‐cluding(1) using heterogeneous catalysts with promising high selectivity and mild reaction condi‐tion,(2) application of carbon dioxide as a co‐oxidant, and(3) application of alternative promoters. The optimisation of para‐xylene oxidation was also outlined.  相似文献   

3.
Iron was extracted on-line from solid meat samples by a simple and rapid continuous ultrasound-assisted extraction system (CUES). The CUES is connected to a flow injection manifold, which allows the on-line flame atomic absorption spectrometric determination of iron. A Plakett–Burman design was used for the optimisation of the CUES. The method achieved a total sampling frequency of 11 samples per hour with a relative standard deviation for the complete procedure of 0.4%. The detection limit was 0.6 g g–1 (dry mass) for a sample amount of 30 mg. Accurate results were obtained by measuring the certified reference materials BCR-186 (pig kidney) and BCR-184 (bovine muscle). The analytical procedure was applied to different real meat samples with satisfactory results.  相似文献   

4.
Extractive electrospray ionization mass spectrometry (EESI-MS) for real-time monitoring of organic chemical reactions was demonstrated for a well-established pharmaceutical process reaction and a widely used acetylation reaction in the presence of a nucleophilic catalyst, 4-dimethylaminopyridine (4-DMAP). EESI-MS provides real-time information that allows us to determine the optimum time for terminating the reaction based on the relative intensities of the precursors and products. In addition, tandem mass spectrometric (MS/MS) analysis via EESI-MS permits on-line validation of proposed reaction intermediates. The simplicity and rapid response of EESI-MS make it a valuable technique for on-line characterization and full control of chemical and pharmaceutical reactions, resulting in maximized product yield and minimized environmental costs. Copyright (c) 2008 John Wiley & Sons, Ltd.  相似文献   

5.
The application of mathematical modelling method monitoring of catalytic reforming unit of Komsomolsk oil-refinery is proposed. The mathematical model-based system “Catalyst's Control” which takes into account both the physical and chemical mechanisms of hydrocarbon mixture conversion reaction as well as the catalyst deactivation was used for catalytic reforming installation monitoring. The models created can be used for optimization and prediction of operating parameters (octane number, reactors outlet temperature and yield) of the reforming process. It is shown, that the work on the optimal activity allows increasing product output with a constant level of production costs, and get the information about Pt-Re catalyst work efficiency.  相似文献   

6.
Calcium was extracted on-line from solid seafood samples by a simple and rapid continuous ultrasound-assisted extraction system. This system is connected to a flow injection manifold, which allows the on-line flame atomic absorption spectrometric determination of calcium. This method enables the analysis of solid samples avoiding time-consuming traditional sample preparation methods and their inherent errors. The on-line manifold for calcium determination is the simplest possible, because a volume of 250 L of acid extract is injected into an ultrapure water carrier stream. The acid extract was diluted on-line with lanthanum, which also acts as masking agent in order to avoid chemical interferences. The continuous monitoring of the calcium signal was accomplished by flame atomic absorption spectrometry. A Plackett-Burman experimental design was used for the optimisation of the continuous leaching procedure. The method allowed a total sampling frequency of 40 samples per hour, with a relative standard deviation for the complete procedure of 0.9% (for a sample containing 3414.35 mg/kg calcium (dry mass)). The limit of detection was found to be 44.4 mg/kg (dry mass) for 5 mg of sample. The analytical procedure was applied to real seafood samples.  相似文献   

7.
The synthesis of a putative biosynthetic precursor of psymberin including a formal synthesis of the natural product is described. The key step towards the densely functionalized tetrahydropyran core was an enantioselective catalytic Mukaiyama aldol reaction using a titanium(IV)–BINOL catalyst system. syn‐Selective reduction followed by ozonolysis led to a rapid assembly of the tetrahydropyran ring. This flexible approach also allows the synthesis of similar fragments of other complex molecules such as bryostatins and pederins. The syn‐selective coupling between the tetrahydropyran and the aromatic aldehyde was achieved using a boron‐mediated aldol reaction which was followed by further transformations to complete the synthesis of the precursor as well as the formal synthesis of the natural product.  相似文献   

8.
An inverted supercritical carbon dioxide (scCO(2))/aqueous biphasic system has been used as reaction media for Rh-catalysed hydrogenation of polar substrates. Chiral and achiral CO(2)-philic catalysts were efficiently immobilised in scCO(2) as the stationary phase, while the polar substrates and products were contained in water as the mobile phase. Notably, product separation and catalyst recycling were conducted without depressurisation of the autoclave. The catalyst phase was reused several times with high conversion and product recovery of more than 85 %. Loss of rhodium and phosphorus by leaching were found to be below the detection limit after the first two cycles in the majority of repetitive experiments. The reaction conditions were optimised with a minimum of experiments by using a simplex algorithm in a sequential optimisation. Total turnover numbers (TTNs) of up to 1600, turnover frequencies (TOFs) of up to 340 h(-1) and ee's up to 99 % were obtained in repetitive batch operations. The scope of the devised catalytic system has been investigated and a semicontinuous reaction setup has been implemented. The chiral ligand (R,S)-3-H(2)F(6)-BINAPHOS allowed highly enantioselective hydrogenation of itaconic acid and methyl-2-acetamidoacrylate combined with a considerable catalyst stability in these reaction media.  相似文献   

9.
A catalytic (E)‐ to (Z)‐isomerization of olefins using a photoredox catalyst under mild reaction conditions is presented. A variety of (Z)‐alkenes can be prepared in the presence of visible light. A new reaction system allows an easy and efficient scale‐up, as well as a continuous flow process in which the photocatalyst is immobilized in an ionic liquid and continuously recycled by simple phase separation.  相似文献   

10.
A polystyrene‐supported 1,1’‐bi‐2‐naphthol derived phosphoric acid has been synthesized and applied in the enantioselective Friedel–Crafts reaction of indoles and sulfonylimines. The immobilized catalyst was highly active and selective, and gave rise to a broad range of 3‐indolylmethanamines (19 examples) in high yields and excellent enantioselectivities (up to 98 % enantiomeric excess) after short reaction times under very convenient reaction conditions (RT in dichloromethane). Moreover, repeated recycling (14 cycles) was possible with no substantial loss in catalytic performance and the system could be adapted to a continuous‐flow operation (6 h). Finally, the applicability of the system was further confirmed by rapid access to a library of compounds with three points of diversity in a single continuous‐flow experiment that involved sequential pumping of different substrate combinations.  相似文献   

11.
Polypropylene (PP) was pyrolysed over spent FCC commercial catalyst (FCC-s1) using a laboratory fluidised-bed reactor operating isothermally at ambient pressure. The influence of reaction conditions including catalyst, temperature, and ratio of polymer to catalyst feed and flow rates of fluidising gas was examined. The yield of gaseous and liquid hydrocarbon products at 390 °C for spent FCC commercial catalyst (87.8 wt%) gave much higher yield than silicate (only 17.1 wt%). Greater product selectivity was observed with FCC-s1 as a post-use catalyst with about 61 wt% olefins products in the C3-C7 range. The selectivity could be further influenced by changes in reaction conditions. Valuable hydrocarbons of olefins and iso-olefins were produced by low temperatures and short contact times used in this study. It is also demonstrated that a post-use catalyst system under appropriate conditions the resource potential of polymer waste can be economically recovered and also can address the recycling desire to see an alternative to solve a major environment problem.  相似文献   

12.
A robust heterogeneous self-supported chiral titanium cluster (SCTC) catalyst and its application in the enantioselective imine-cyanation/Strecker reaction is described under batch and continuous processes. One of the major hurdles in the asymmetric Strecker reaction is the lack of availability of efficient and reusable heterogeneous catalysts that work at room temperature. We exploited the readily hydrolyzable nature of titanium alkoxide to synthesize a self-supported chiral titanium cluster (SCTC) catalyst by the controlled hydrolysis of a preformed chiral titanium-alkoxide complex. The isolated SCTC catalysts were remarkably stable and showed up to 98 % enantioselectivity (ee) with complete conversion of the imine within 2 h for a wide variety of imines at room temperature. The heterogeneous catalysts were recyclable more than 10 times without any loss in activity or selectivity. The robustness, high performance, and recyclability of the catalyst enabled it to be used in a packed-bed reactor to carry out the cyanation under continuous flow. Up to 97 % ee and quantitative conversion with a throughput of 45 mg h(-1) were achieved under optimized flow conditions at room temperature in the case of benzhydryl imine. Furthermore, a three-component Strecker reaction was performed under continuous flow by using the corresponding aldehydes and amines instead of the preformed imines. A good product distribution was obtained for the formation of amino nitriles with ee values of up to 98 %. Synthetically useful ee values were also obtained for challenging α-branched aliphatic aldehyde by using the three-component continuous Strecker reaction.  相似文献   

13.
A process for the hydroformylation of relatively low volatility alkenes (demonstrated for 1-dodecene) in a continuous flow system is described. The catalyst is dissolved in an ionic liquid while the substrate and gaseous reagents are transported into the reactor dissolved in supercritical CO(2), which simultaneously acts as a transport vector for aldehyde products. Decompression of the fluid mixture downstream yields products which are free of both reaction solvent and catalyst. The use of rhodium complexes of triaryl phosphites leads to ligand degradation through reaction of the ionic liquid with water and subsequent attack of the released HF on the phosphite. Sodium salts of sulfonated phosphines are insufficiently soluble in the ionic liquids to obtain acceptable rates, but replacing the sodium by a cation similar to that derived from the ionic liquid, allows good solubility and activity to be obtained. The nature of the ionic liquid is very important in achieving high rates, with 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amides giving the best activity if the alkyl chain is at least C(8). Catalyst turnover frequencies as high as 500 h(-1) have been observed, with the better rates at higher substrate flow rates. Rhodium leaching into the product stream can be as low as 0.012 ppm, except at low partial pressures of CO/H(2), when it is significantly higher. Oxygen impurities in the CO(2) feed can lead to oxidation of the phosphine giving higher rates, lower selectivities to the linear aldehyde, increased alkene isomerization and greater leaching of rhodium. However, it is found that under certain process conditions, the supercritical fluid-ionic liquid (SCF-IL) system can be operated continuously for several weeks without any visible sign of catalyst degradation. Comparisons with commercial hydroformylation processes are provided.  相似文献   

14.
A readily recyclable asymmetric catalyst has been developed based on the self‐assembly of a homogeneous catalyst in a fibrous network of multiwalled carbon nanotubes (MWNTs). Dimerization of an amide‐based chiral ligand with a suitable spacer allows for the efficient formation of a heterogeneous catalyst by self‐assembly on addition of Er(OiPr)3. The self‐assembly proceeds in the MWNT fibrous network and small clusters of assembled catalyst are confined in the MWNTs, producing an easily handled solid‐phase catalyst. The resulting MWNT‐confined catalyst exhibits a good catalytic performance in a catalytic asymmetric Mannich‐type reaction, which can be conducted in a repeated batch system and in a continuous‐flow platform.  相似文献   

15.
Current development in catalyst discovery includes combinatorial synthesis methods for the rapid generation of compound libraries combined with high-throughput performance-screening methods to determine the associated activities. Of these novel methodologies, mass spectrometry (MS) based flow chemistry methods are especially attractive due to the ability to combine sensitive detection of the formed reaction product with identification of introduced catalyst complexes. Recently, such a mass spectrometry based continuous-flow reaction detection system was utilized to screen silver-adducted ferrocenyl bidentate catalyst complexes for activity in a multicomponent synthesis of a substituted 2-imidazoline. Here, we determine the merits of different ionization approaches by studying the combination of sensitive detection of product formation in the continuous-flow system with the ability to simultaneous characterize the introduced [ferrocenyl bidentate+Ag]+ catalyst complexes. To this end, we study the ionization characteristics of electrospray ionization (ESI), atmospheric-pressure chemical ionization (APCI), no-discharge APCI, dual ESI/APCI, and dual APCI/no-discharge APCI. Finally, we investigated the application potential of the different ionization approaches by the investigation of ferrocenyl bidentate catalyst complex responses in different solvents.  相似文献   

16.
An enantioselective intramolecular Conia-ene reaction of beta-dicarbonyl compounds and alkynes to afford methylene cyclopentanes is described. The reaction employs a DTBMSegphos-Pd(II)/Yb(III) dual catalyst system that allows for the asymmetric synthesis of all-carbon quaternary centers and generates a product containing an alkene that can be further manipulated.  相似文献   

17.
《化学:亚洲杂志》2017,12(14):1749-1757
The catalytic cycles of palladium‐catalyzed silylation of aryl iodides, which are initiated by oxidative addition of hydrosilane or aryl iodide through three different mechanisms characterized by intermediates R3Si−PdII−H (Cycle A), Ar−PdII−I (Cycle B), and PdIV (Cycle C), have been explored in detail by hybrid DFT. Calculations suggest that the chemical selectivity and reactivity of the reaction depend on the ligation state of the catalyst and specific reaction conditions, including feeding order of substrates and the presence of base. For less bulky biligated catalyst, Cycle C is energetically favored over Cycle A, through which the silylation process is slightly favored over the reduction process. Interestingly, for bulky monoligated catalyst, Cycle B is energetically more favored over generally accepted Cycle A, in which the silylation channel is slightly disfavored in comparison to that of the reduction channel. Moreover, the inclusion of base in this channel allows the silylated product become dominant. These findings offer a good explanation for the complex experimental observations. Designing a reaction process that allows the oxidative addition of palladium(0) complex to aryl iodide to occur prior to that with hydrosilane is thus suggested to improve the reactivity and chemoselectivity for the silylated product by encouraging the catalytic cycle to proceed through Cycles B (monoligated Pd0 catalyst) or C (biligated Pd0 catalyst), instead of Cycle A.  相似文献   

18.
A continuous ultrasound-assisted extraction system connected to a flow injection manifold has been used for the on-line determination of zinc in meat samples by flame atomic absorption spectrometry. An experimental design was used for the optimisation of the continuous manifold. This flow injection methodology allowed a sampling frequency of ca. 80 samples per hour with a relative standard deviation for the whole procedure of 0.3% (for a sample containing 163.6 μg g−1 Zn). The detection limit was 0.6 μg g−1 for a sample amount of 5 mg. Accurate results were obtained by measuring certified reference materials (BCR-186 (pig kidney) and BCR-184 (bovine muscle)). The analytical procedure was applied to different real meat samples with satisfactory results.  相似文献   

19.
A highly active heterogeneous Pd-nanoparticle catalyst for the intramolecular addition of phenols to alkynes was developed and employed in a continuous flow reaction system. Running the reaction in flow mode revealed reaction kinetics, such as the activation energy and catalyst deactivation, and provides many potential practical advantages.  相似文献   

20.
A parallel reactor setup in combination with a spatially resolving Fourier transform infrared focal plane array detector (FTIR-FPA) system in rapid scan mode has been developed which is capable of analyzing simultaneously the specific surface area of 15 copper catalysts. The system allows the reliable determination of copper surface areas with an error of about +/-1 m(2)/g. Problems are encountered with very fluffy catalyst powders, since this leads to excessive pressure drop over the catalyst bed. The error brought about by this effect can be eliminated by taking into account the flow deviations between channels in such cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号