首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The antibandwidth maximization problem (AMP) consists of labeling the vertices of a n-vertex graph G with distinct integers from 1 to n such that the minimum difference of labels of adjacent vertices is maximized. This problem can be formulated as a dual problem to the well known bandwidth problem. Exact results have been proved for some standard graphs like paths, cycles, 2 and 3-dimensional meshes, tori, some special trees etc., however, no algorithm has been proposed for the general graphs. In this paper, we propose a memetic algorithm for the antibandwidth maximization problem, wherein we explore various breadth first search generated level structures of a graph—an imperative feature of our algorithm. We design a new heuristic which exploits these level structures to label the vertices of the graph. The algorithm is able to achieve the exact antibandwidth for the standard graphs as mentioned. Moreover, we conjecture the antibandwidth of some 3-dimensional meshes and complement of power graphs, supported by our experimental results.  相似文献   

2.
The antibandwidth problem consists of placing the vertices of a graph on a line in consecutive integer points in such a way that the minimum difference of adjacent vertices is maximised. The problem was originally introduced in [J.Y.-T. Leung, O. Vornberger, J.D. Witthoff, On some variants of the bandwidth minimisation problem, SIAM Journal of Computing 13 (1984) 650-667] in connection with the multiprocessor scheduling problems and can also be understood as a dual problem to the well-known bandwidth problem, as a special radiocolouring problem or as a variant of obnoxious facility location problems. The antibandwidth problem is NP-hard, there are a few classes of graphs with polynomial time complexities. Exact results for nontrivial graphs are very rare. Miller and Pritikin [Z. Miller, D. Pritikin, On the separation number of a graph, Networks 19 (1989) 651-666] showed tight bounds for the two-dimensional meshes and hypercubes. We solve the antibandwidth problem precisely for two-dimensional meshes, tori and estimate the antibandwidth value for hypercubes up to the third-order term. The cyclic antibandwidth problem is to embed an n-vertex graph into the cycle Cn, such that the minimum distance (measured in the cycle) of adjacent vertices is maximised. This is a natural extension of the antibandwidth problem or a dual problem to the cyclic bandwidth problem. We start investigating this invariant for typical graphs and prove basic facts and exact results for the same product graphs as for the antibandwidth.  相似文献   

3.
The antibandwidth problem is to label vertices of a graph G=(V,E) bijectively by 0,1,2,…,|V|−1 so that the minimal difference of labels of adjacent vertices is maximised. In this paper we prove an almost exact result for the antibandwidth of three-dimensional meshes. Provided results are extensions of the two-dimensional case and an analogue of the result for the bandwidth of three-dimensional meshes obtained by FitzGerald.  相似文献   

4.
《Discrete Mathematics》2022,345(5):112806
A sum graph is a finite simple graph whose vertex set is labeled with distinct positive integers such that two vertices are adjacent if and only if the sum of their labels is itself another label. The spum of a graph G is the minimum difference between the largest and smallest labels in a sum graph consisting of G and the minimum number of additional isolated vertices necessary so that a sum graph labeling exists. We investigate the spum of various families of graphs, namely cycles, paths, and matchings. We introduce the sum-diameter, a modification of the definition of spum that omits the requirement that the number of additional isolated vertices in the sum graph is minimal, which we believe is a more natural quantity to study. We then provide asymptotically tight general bounds on both sides for the sum-diameter, and study its behavior under numerous binary graph operations as well as vertex and edge operations. Finally, we generalize the sum-diameter to hypergraphs.  相似文献   

5.
An anticoloring of a graph is a coloring of some of the vertices, such that no two adjacent vertices are colored in distinct colors. The anticoloring problem seeks, roughly speaking, for such colorings with many vertices colored in each color. We show that, to solve the anticoloring problem with two colors for general graphs, it suffices to solve it for connected graphs.  相似文献   

6.
We consider the vertex coloring problem, which can be stated as the problem of minimizing the number of labels that can be assigned to the vertices of a graph G such that each vertex receives at least one label and the endpoints of every edge are assigned different labels. In this work, the 0-1 integer programming formulation based on representative vertices is revisited to remove symmetry. The previous polyhedral study related to the original formulation is adapted and generalized. New versions of facets derived from substructures of G are presented, including cliques, odd holes and anti-holes and wheels. In addition, a new class of facets is derived from independent sets of G. Finally, a comparison with the independent sets formulation is provided.  相似文献   

7.
8.
The bandwidth of a matrix A={aij} is defined as the maximum absolute difference between i and j for which aij≠0. The problem of reducing the bandwidth of a matrix consists of finding a permutation of the rows and columns that keeps the nonzero elements in a band that is as close as possible to the main diagonal of the matrix. This NP-complete problem can also be formulated as a labeling of vertices on a graph, where edges are the nonzero elements of the corresponding symmetrical matrix. Many bandwidth reduction algorithms have been developed since the 1960s and applied to structural engineering, fluid dynamics and network analysis. For the most part, these procedures do not incorporate metaheuristic elements, which is one of the main goals of our current development. Another equally important goal is to design and test a special type of candidate list strategy and a move mechanism to be embedded in a tabu search procedure for the bandwidth reduction problem. This candidate list strategy accelerates the selection of a move in the neighborhood of the current solution in any given iteration. Our extensive experimentation shows that the proposed procedure outperforms the best-known algorithms in terms of solution quality consuming a reasonable computational effort.  相似文献   

9.
An anticoloring of a graph is a coloring of some of the vertices, such that no two adjacent vertices are colored in distinct colors. The anticoloring problem seeks, roughly speaking, such colorings with many vertices colored in each color. We deal with the anticoloring problem for planar graphs and, using Lipton and Tarjan’s separation algorithm, provide an algorithm with some bound on the error. We also show that, to solve the anticoloring problem for general graphs, it suffices to solve it for connected graphs.  相似文献   

10.
《Discrete Mathematics》2002,231(1-3):311-318
An L(2,1)-labeling of graph G is an integer labeling of the vertices in V(G) such that adjacent vertices receive labels which differ by at least two, and vertices which are distance two apart receive labels which differ by at least one. The λ-number of G is the minimum span taken over all L(2,1)-labelings of G. In this paper, we consider the λ-numbers of generalized Petersen graphs. By introducing the notion of a matched sum of graphs, we show that the λ-number of every generalized Petersen graph is bounded from above by 9. We then show that this bound can be improved to 8 for all generalized Petersen graphs with vertex order >12, and, with the exception of the Petersen graph itself, improved to 7 otherwise.  相似文献   

11.
In this paper, we study the minimum sum coloring (MSC) problem on P 4-sparse graphs. In the MSC problem, we aim to assign natural numbers to vertices of a graph such that adjacent vertices get different numbers, and the sum of the numbers assigned to the vertices is minimum. Based in the concept of maximal sequence associated with an optimal solution of the MSC problem of any graph, we show that there is a large sub-family of P 4-sparse graphs for which the MSC problem can be solved in polynomial time. Moreover, we give a parameterized algorithm and a 2-approximation algorithm for the MSC problem on general P 4-sparse graphs.  相似文献   

12.
In this paper, we study the Minimum Sum Coloring (MSC) problem on P4-sparse graphs. In the MSC problem, we aim to assign natural numbers to vertices of a graph such that adjacent vertices get different numbers, and the sum of the numbers assigned to the vertices is minimum. First, we introduce the concept of maximal sequence associated with an optimal solution of the MSC problem of any graph. Next, based in such maximal sequences, we show that there is a large sub-family of P4-sparse graphs for which the MSC problem can be solved in polynomial-time.  相似文献   

13.
We study tree-indexed random walks as introduced by Benjamini, Häggström, and Mossel, i.e., labelings of a tree for which adjacent vertices have labels differing by 1. It is a conjecture of those authors that the distribution of the range for any such tree is dominated by that of a path on the same number of edges. The two main variants of this conjecture considered in the literature are the standard walks, in which adjacent vertices must have labels differing by exactly 1, and lazy walks, in which adjacent vertices must have labels differing by at most 1. We confirm this conjecture for all trees in the lazy case and provide some partial results in the standard case.  相似文献   

14.
Abstract

The matrix bandwidth minimization problem (MBMP) consists in finding a permutation of the lines and columns of a given sparse matrix in order to keep the non-zero elements in a band that is as close as possible to the main diagonal. Equivalently in terms of graph theory, MBMP is defined as the problem of finding a labelling of the vertices of a given graph G such that its bandwidth is minimized. In this paper, we propose an improved genetic algorithm (GA)-based heuristic for solving the matrix bandwidth minimization problem, motivated by its robustness and efficiency in a wide area of optimization problems. Extensively computational results are reported for an often used set of benchmark instances. The obtained results on the different instances investigated show improvement of the quality of the solutions and demonstrate the efficiency of our GA compared to the existing methods in the literature.  相似文献   

15.
We consider the minimum number of cliques needed to partition the edge set of D(G), the distance multigraph of a simple graph G. Equivalently, we seek to minimize the number of elements needed to label the vertices of a simple graph G by sets so that the distance between two vertices equals the cardinality of the intersection of their labels. We use a fractional analogue of this parameter to find lower bounds for the distance multigraphs of various classes of graphs. Some of the bounds are shown to be exact.  相似文献   

16.
A path cover of a graph G=(V,E) is a set of pairwise vertex-disjoint paths such that the disjoint union of the vertices of these paths equals the vertex set V of G. The path cover problem is, given a graph, to find a path cover having the minimum number of paths. The path cover problem contains the Hamiltonian path problem as a special case since finding a path cover, consisting of a single path, corresponds directly to the Hamiltonian path problem. A graph is a distance-hereditary graph if each pair of vertices is equidistant in every connected induced subgraph containing them. The complexity of the path cover problem on distance-hereditary graphs has remained unknown. In this paper, we propose the first polynomial-time algorithm, which runs in O(|V|9) time, to solve the path cover problem on distance-hereditary graphs.  相似文献   

17.
Given an edge- or vertex-weighted graph or digraph and a list of source-sink pairs, the minimum multicut problem consists in selecting a minimum weight set of edges or vertices whose removal leaves no path from each source to the corresponding sink. This is a classical NP-hard problem, and we show that the edge version becomes tractable in bounded tree-width graphs if the number of source-sink pairs is fixed, but remains NP-hard in directed acyclic graphs and APX-hard in bounded tree-width and bounded degree unweighted digraphs. The vertex version, although tractable in trees, is proved to be NP-hard in unweighted cacti of bounded degree and bounded path-width.  相似文献   

18.
 The bandwidth of a graph is the minimum, over vertex labelings with distinct integers, of the maximum difference between labels on adjacent vertices. Kuang and McDiarmid proved that almost all n-vertex graphs have bandwidth . Thus the sum of the bandwidths of a graph and its complement is almost always at least ; we prove that it is always at most 2n−4 log 2 n+o(log n). The proofs involve improving the bounds on the Ramsey and Turán numbers of the “halfgraph”. Received: September 2, 1998?Final version received: November 29, 1999  相似文献   

19.
Two variations of set intersection representation are investigated and upper and lower bounds on the minimum number of labels with which a graph may be represented are found that hold for almost all graphs. Specifically, if θk(G) is defined to be the minimum number of labels with which G may be represented using the rule that two vertices are adjacent if and only if they share at least k labels, there exist positive constants ck and c′k such that almost every graph G on n vertices satisfies Changing the representation only slightly by defining θ;odd (G) to be the minimum number of labels with which G can be represented using the rule that two vertices are adjacent if and only if they share an odd number of labels results in quite different behavior. Namely, almost every graph G satisfies Furthermore, the upper bound on θodd(G) holds for every graph. © 1996 John Wiley & Sons, Inc.  相似文献   

20.
In this paper, we study the minimum sum set coloring (MSSC) problem which consists in assigning a set of x(v) positive integers to each vertex v of a graph so that the intersection of sets assigned to adjacent vertices is empty and the sum of the assigned set of numbers to each vertex of the graph is minimum. The MSSC problem occurs in two versions: non-preemptive and preemptive. We show that the MSSC problem is strongly NP-hard both in the preemptive case on trees and in the non-preemptive case in line graphs of trees. Finally, we give exact parameterized algorithms for these two versions on trees and line graphs of trees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号