首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 0.5K0.5Bi0.5TiO3–0.5PbTiO3 ceramics were prepared by following a standard solid-state method. The Raman, thermal and dielectric properties of these ceramics were investigated. The X-ray measurements showed that samples have single perovskite-type structure with tetragonal symmetry. Dielectric study revealed that the dielectric behaviour of the investigated ceramics is rather of normal ferroelectrics with large thermal hysteresis. The transition temperature observed by means of differential scanning calorimetry measurements is in good agreement with that obtained from dielectric study.  相似文献   

2.
3.
A systematic investigation of layered perovskite oxides with general formula Ln0.5Sr1.5Mn0.5Fe0.5O4 (Ln?=?La, Nd, Gd, and Dy) has been undertaken mainly to understand their structural, magnetic, as well as electrical behavior. The materials were prepared by the ceramic method. X-ray data have been analyzed by using program Checkcell and the variations of various parameters are explained. It has been concluded that not only A-site cation radius, <r A>, but also the size variance factor (σ 2) influence electrical and magnetic properties. A systematic study of electrical resistivity of all the four materials was undertaken as a function of temperature to understand the conduction mechanism. On analyzing the electrical resistivity data, it has been concluded that variable range hopping model is found to fit well. The magnetic studies suggest that the phases are antiferromagnetic and this behavior could arise from Mn4+–O–Mn4+, and Fe3+–O–Fe3+ superexchange interaction.  相似文献   

4.
The magnetic, electrical and thermal properties in the La0.5?xLnxCa0.5?ySryMnO3 (Ln=Pr, Nd, Sm) bulk system were investigated. Detailed dc magnetization and linear ac susceptibility measurements reveal that the samples first undergo phase transition from paramagnetic to ferromagnetic phase and then to an antiferromagnetic phase upon further cooling. It is found that both the Curie and Neel temperatures decrease systematically with increasing A-site disorder in these manganites. The electrical resistivity exhibits semiconducting behavior throughout the temperature range investigated and the electronic conduction mechanism can be conveniently described within the framework of the variable range hopping model above T=150 K. The Seebeck coefficient (S) in the magnetically ordered regime infers that the complicated temperature dependence of S is an indication of electron–magnon scattering. Specific heat measurements depict a broadened hump in the vicinity of TC, indicating the existence of magnetic ordering and magnetic inhomogeneity in the samples. The temperature dependence of thermal conductivity, κ(T), reveals a positive dκ/dT in the paramagnetic region, which may be related to the local anharmonic lattice distortions associated with small polarons.  相似文献   

5.
The compressibility, the temperature dependence of bulk modulus, the pressure dependence of normalized volume V/V0, thermal expansion coefficient and Debye temperature of LaNi5-xAlx compounds are successfully obtained using the first-principles plane-wave pseudopotential (PW-PP) method, the EOSFIT6.0 software and the quasiharmonic Debye model. The rapid decrease of relative lattice constant a/a0 shows that the deformation is easier in directions normal to the c-axis than that along it. The relationships between bulk modulus B and pressure at different temperatures are also analysed. It is found that the bulk modulus B increases monotonically with increasing pressure. Moreover, the pressure dependences of thermal expansion and Debye temperature are also successfully obtained. The calculated results are in agreement with the experimental data.  相似文献   

6.
The electronic structures, Born effective charges(BECs), and full phonon dispersions of cubic, tetragonal, orthorhombic, and rhombohedral K0.5Na0.5Nb O3 are investigated by the first principles method based on density functional theory.The hybridized states of Nb 4d and O 2p states are observed in the valence band, showing the formation of a strong Nb–O covalent bond which should be responsible for the displacement of Nb and O atoms. The abnormally large BECs of Nb and O indicate the possibility of phase instability induced by the off-center displacement of Nb and O atoms. The phonon dispersions reveal that the ferroelectric instability of K0.5Na0.5Nb O3 is dominated by Nb and O displacements with significant Na characteristics. In addition to the ferroelectric instability, there is also rotational instability coming from the oxygen octahedra rotation around one axis. Moreover, the Γ phonon properties of orthorhombic KNb O3, Na Nb O3, and K0.5Na0.5Nb O3 are also studied in detail.  相似文献   

7.
Lead-free ceramics (1?x)NaNbO3xBi0.5Li0.5TiO3 have been fabricated by an ordinary sintering technique, and their electric properties and temperature characteristics have been studied. All the ceramics possess a perovskite structure with orthorhombic symmetry, indicating that (Bi0.5Li0.5)TiO3 diffuses into NaNbO3 lattices to form a new solid solution. A low (Bi0.5Li0.5)TiO3 doping level transforms the NaNbO3 ceramics from antiferroelectric to ferroelectric. The ceramics with x ≤ 0.075 are normal ferroelectric, and the ferroelectric-paraelectric phase become diffusives with the doping level of Bi0.5Li0.5TiO3 increasing. As x increases, the Curie temperature of the ceramics decreases linearly, while the relative permittivity εr increases. 0.925NaNbO3–0.075(Bi0.5Li0.5)TiO3 ceramic exhibits the relatively large piezoelectric constant (d33 = 58 pC/N), high Curie temperature (TC = 228 °C) and good temperature stability, suggesting that the ceramics are one of new possible candidates for lead-free piezoelectric materials.  相似文献   

8.
Physics of the Solid State - The structure, dielectric characteristics, and magnetoelectric effect of a 0.5BiFeO3–0.5PbFe0.5Nb0.5O3 multiferroic ceramics are studied. We found that the...  相似文献   

9.
Bi0.5 (Na0.72K0.28- x Lix )0.5 TiO3 (BNKLT- 100x) lead-free piezoelectric ceramics are synthesized by conventional solid state sintering techniques. The dielectric and piezoelectric properties of the BNKLT-100x ceramics as a function of Li content are systematically investigated. It is found that not only Li content but also the sintering temperature has a strong effect on the piezoelectric properties of BNKLT. The piezoelectric constant d33 Of BNKLT varies from 120 to 252pC/N in the Li content range from 0.03 to 0.16. In the sintering temperature range from 1080 to 1130℃, the d33 value of BNKLT-6 changes from 200pC/N to 252pC/N. The BNKLT-6 sample sintered at 1100℃ has the highest piezoelectric constant d33 of 252pC/N, with the electromechanical coupling factors kp of 0.32 and kt of 0.44.  相似文献   

10.
A series of polycrystalline La0.5Ca0.5Mn1?xNixO3 (x = 0.00, 0.025, 0.050, 0.075, 0.100 and 0.125) was synthesised using solid state reaction. Measurements in a cooling and warming cycle between 300 and 80 K were carried out to study the Ni-doping effects on the electrical resistivity, thermopower and magnetisation of single-phase La0.5Ca0.5Mn1?xNixO3. Partial substitution of Ni for Mn leads to the suppression of charge ordering state, the evidence of which is shown by the dramatic decrease in electrical resistivity and thermal hysteresis width in electrical resistivity, thermopower and magnetisation. However, the magnitude of both electrical resistivity and thermopower increases with increasing Ni content. This can be attributed to an increase in the Mn4+ concentration, which favours the antiferromagnetic state and leads to a gradual disappearance of ferromagnetic double exchange interaction. Besides, the metal–nonmetal transition temperature decreases with increasing Ni content until x = 0.075, which might arise from increased electron–phonon coupling due to less ordered spins at temperatures above ferromagnetic transition. For samples with x greater than 0.075, no metal–nonmetal transition is observed due to the suppression of double exchange mechanism.  相似文献   

11.
The phase assemblage, crystal structure evolution and microwave dielectric response of (Ca0.5+xSr0.5−x)[(Al0.5Nb0.5)0.5Ti0.5]O3 ceramics (abbreviated as CSANT hereafter) are investigated. Single perovskite solid solution is formed in the CSANT ceramics in Sr-rich composition range of x < −0.05, however, Ca4Ti3O10-type layered perovskite phase begins to segregate after x = −0.05. The CSANT perovskites crystallized in Fm3m cubic symmetry in the composition range of x ≤ −0.2, however, as the Ca2+ content in A-site increased, the oxygen octahedral began to be anti-phase tilted at x = −0.1 and the crystal structure transited to P21/n pseudo-orthorhombic space group thereafter. The microwave dielectric response of the CSANT ceramics is elaborately discussed in terms of their crystallographic structure and chemical composition. When sintered at 1500 °C for 4 h, a dielectric constant ɛr of 52.5, a Qf product of 28000 GHz and a τf of +25.4 ppm/°C microwave dielectric ceramic can be obtained in the CSANT ceramics at x = 0.3.  相似文献   

12.
The full potential linearized augmented plane wave (FP-LAPW) method with the generalized gradient approximation (GGA) is applied to study the electronic and optical properties of perovskite-type compounds Y1-xCaxTiO3. The lattice parameters, magnetic moment, band structure, density of states and optical conductivity are obtained. The results show that the Ca ion plays an important role in the electronic properties and optical responses. Moreover, the optical properties including the dielectric function, absorption spectrum, extinction coefficient, energy-loss spectrum and refractive index are also discussed.  相似文献   

13.
ABSTRACT

Lead-free (Na0.5Bi0.5)1?xSrxTiO3 (x = 0, 0.04 and 0.06) ceramics with relative densities above 97% were prepared by solid-state synthesis process. Their dielectric, thermal and Raman properties were studied. X-ray diffraction analysis shows perovskite structure with rhombohedral symmetry at room temperature. Sr doping of Na0.5Bi0.5TiO3 (NBT) results in an increase of the dielectric permittivity, diffusing of the permittivity maximum and its shift toward lower temperatures. The temperature of the rhombohedral–tetragonal phase transition indicated by the differential scanning calorimetry (DSC) peak and relaxational dielectric anomaly near the depolarization temperature are also shifted toward lower temperatures. The observed increase and broadening of the permittivity maximum, enhancement of the dielectric relaxation near the depolarization temperature, broadening of the DSC anomaly related to the rhombohedral–tetragonal phase transition and broadening of the Raman bands with increasing Sr content are attributed to the increase of the degree of cationic disorder and evident enhancement of the relaxor-like features in NBT–xST. This enhancement could play a positive role in the improvement of the piezoelectric performance of NBT-based ceramics.  相似文献   

14.
Half doped mixed valence manganite system La0.5Ca0.45?xSrxBa0.05MnO3 (with x=0.1, 0.2, and 0.3) synthesized through a low temperature nitrate route is systematically investigated in this paper. The electronic transport and magnetic properties are analyzed and compared apart from the study of unit cell structure and composition. The system is found to crystallize only in orthorhombic structure (Pnma) and the electronic phase transitions are observed to be of second order. The charge and orbital ordering have been observed to coexist with ferromagnetism in x=0.1 compound. Application of small polaron and variable range hopping models to resistivity data of the system corresponding to high temperature range shows increasing mobility of eg electrons with x, with the later model describing the electronic transport very closely than the former. The temperature dependent magnetization of the compounds shows monotonic increase of paramagnetic to ferromagnetic transition (TC) with x. Ferromagnetism is exhibited for the complete temperature range down from respective TC in contrast to antiferromagnetism usually exhibited by half-doped compounds in the low temperature range. The plots of magnetization versus magnetic field reveal a transition from soft to hard magnetic character for all the compounds as the temperature is lowered.  相似文献   

15.
Lead-free piezoelectric ceramics of (1?x?y)Bi0.5Na0.5TiO3xBi0.5K0.5TiO3yLiNbO3 (BNT–BKT–LN-x/y) have been fabricated by a conventional solid-state reaction method, and their microstructure and electrical properties have been investigated. The results of X-ray diffraction (XRD) measurement show that K+, Li+ and Nb5+ diffuse into the Bi0.5Na0.5TiO3 lattices to form a solid solution with a pure perovskite structure. The BKT and LN addition has no remarkable effect on the crystal structure. However, a significant change in grain size took place. Simultaneously, with increasing amount of LN, the temperature for a ferroelectric–antiferroelectric phase transition is clearly reduced. The temperature dependence of dielectric properties suggests that the ceramics have diffuse-type phase transition characteristics. The piezoelectric constant d33 and the electromechanical coupling factor kp of the ceramics attain maximum values of 195 pC/N and 0.336 at x=0.18 and y=0.01.  相似文献   

16.
刘银  丘泰 《中国物理》2007,16(12):3837-3842
Nanocrystalline Ni0.5Zn0.5 ferrite with average grain sizes ranging from 10 to 100 nm is prepared by using a spraying-coprecipitation method. The results indicate that the nanocrystalline Ni0.5Zn0.5 ferrite is ferromagnetic without the superparamagnetic phenomenon observed at room temperature. Specific saturation magnetization of nanocrystalline Nio.sZno.5 ferrite increases from 40.2 to 75.6 emu/g as grain size increases from 11 to 94nm. Coercivity of nanocrystalline Ni0.5Zn0.5 ferrite increases monotonically when d 〈 62 nm.The relationship between the coercivity and the mean grain size is well fitted into a relation Hc - d^3. A theoretically evaluated value of the critical grain size is 141nm larger than the experimental value 62nm for nanocrystalline Ni0.5Zn0.5 ferrite. The magnetic behaviour of nanocrystalline Ni0.5Zn0.5 ferrite may be explained by using the random anisotropy theory.  相似文献   

17.
Layered LiNi0.5Mn0.5 ? xAlxO2 (x = 0, 0.02, 0.05, 0.08, and 0.1) series cathode materials for lithium-ion batteries were synthesized by a combination technique of co-precipitation and solid-state reaction, and the structural, morphological, and electrochemical properties were examined by XRD, FT-IR, XPS, SEM, CV, EIS, and charge–discharge tests. It is proven that the aliovalent substitution of Al for Mn promoted the formation of LiNi0.5Mn0.5 ? xAlxO2 structures and induced an increase in the average oxidation number of Ni, thereby leading to the shrinkage of the lattice volume. Among the LiNi0.5Mn0.5 ? xAlxO2 materials, the material with x = 0.05 shows the best cyclability and rate ability, with discharge capacities of 219, 169, 155, and 129 mAh g? 1 at 10, 100, 200, and 400 mA g? 1 current density respectively. Cycled under 40 mA g? 1 in 2.8–4.6 V, LiNi0. 5Mn0.45Al0.05O2 shows the highest discharge capacity of about 199 mAh g? 1 for the first cycle, and 179 mAh g? 1 after 40 cycles, with a capacity retention of 90%. EIS analyses of the electrode materials at pristine state and state after first charge to 4.6 V indicate that the observed higher current rate capability of LiNi0. 5Mn0.45Al0.05O2 can be understood due to the better charge transfer kinetics.  相似文献   

18.
A series of Nd1?xCaxMnO3 (x=0.2, 0.33, 0.4, and 0.5) manganites was prepared by sol–gel route by sintering at 1300 °C, mainly to understand the correlation between electron, spin, and phonon couplings. The internal friction and longitudinal modulus along with electrical and magnetic properties have been measured. All the samples are found to exhibit anomalies at TC, TN, and TCO transition temperatures. The anomalies in longitudinal modulus and the internal friction peak at TCO are attributed to Jahn–Teller effect. A strong correlation between the temperature dependent elastic, anelastic, resistivity, and ac susceptibility properties has been observed and an effort has been made to explain the observed anomalous behavior by a qualitative model.  相似文献   

19.
The epitaxial (single crystal-like) Pr0.4La0.1Sr0.5MnO3 (PLSMO) and Nd0.35La0.15Sr0.5MnO3 (NLSMO) thin films are prepared and characterized, and the electric and magnetic properties are examined. We find that both PLSMO and NLSMO have their own optimum deposition temperature (To) in their growing into epitaxial thin films. When the deposition temperature is higher than To, a c-axis oriented but polycrystalline thin film grows; when the deposition temperature is lower than To, the thin film tends to be a-axis oriented and also polycrystalline. The most important point is that for the epitaxial PLSMO and NLSMO thin films the electronic phase transitions are closely consistent with the magnetic phase transitions, i.e. an antiferromagnetic phase corresponds to an insulating state, a ferromagnetic phase corresponds to a metallic state and a paramagnetic phase corresponds to a semiconducting state, while for the polycrystalline thin films the electronic phase transitions are always not consistent with the magnetic transitions.  相似文献   

20.
ABSTRACT

Thermal expansion, Raman and dielectric properties of the lead-free (1?x)Na0.5Bi0.5TiO3-xSrTiO3 (x = 0, 0.08 and 0.1) ceramic solid solutions, fabricated by the conventional solid-state reaction method, were investigated. The Sr-doping results in an increase of the dielectric permittivity, broadening of the permittivity maximum, enhancement of the relaxation near depolarization temperature, broadening of the Raman bands and shift of all anomalies toward lower temperatures. The observed effects are attributed to an increase of the degree of cationic disorder and enhancement of the relaxor-like features. Anomalies in the thermal expansion strain were observed at the temperatures corresponding to the dielectric anomalies but not related to any phase transitions. These anomalies are supposed to follow changes of the averaged unit cell volume in the temperature interval of tetragonal and rhombohedral phase coexistence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号