首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carbon-coated Fe–Mg-homogeneously dispersed Li(Mn0.9Fe0.10)1???x Mg x PO4/C (x?=?0.00, 0.01, 0.03, 0.05, and 0.07) powders are synthesized via a mechano-chemical liquid-phase activation technique. Fine-sized and Fe2+ and Mg2+ evenly distributed precursors are formed using this efficient approach successfully. The synthesis temperature and the Mg2+ doping ratio are investigated and optimized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and electrochemical measurements. Mg doping decreases the lattice parameters of LiMn0.9Fe0.1PO4/C, which will ease the expansion/shrinking effect during the insertion/de-insertion processes. Li(Mn0.9Fe0.1)0.95Mg0.05PO4/C synthesised at 700 °C with ~3 wt% of carbon additive presents the best comprehensive electrochemical properties, and it displays good rate capability with specific discharge capacity of 153 mAh g?1 at 0.1C, 140 mAh g?1 at 1C, and 132 mAh g?1 at 2C rate. The results suggest that the electrochemical performance of the LiMnPO4-based cathode is improved as (Mn0.9Fe0.1) is partially substituted by Mg.  相似文献   

2.
A comparison of electrochemical performance between LiFe0.4Mn0.595Cr0.005PO4/C and LiMnPO4/C cathode materials was conducted in this paper. The cathode samples were synthesized by a nano-milling-assisted solid-state process using caramel as carbon sources. The prepared samples were investigated by XRD, SEM, TEM, energy-dispersive X-ray spectroscopy (EDAX), powder conductivity test (PCT), carbon-sulfur analysis, electrochemical impedance spectroscopy (EIS), and galvanostatic charge-discharge cycling. The results showed that LiFe0.4Mn0.595Cr0.005PO4/C exhibited high specific capacity and high energy density. The initial discharge capacity of LiFe0.4Mn0.595Cr0.005PO4/C was 163.6 mAh g?1 at 0.1C (1C = 160 mA g?1), compared to 112.3 mAh g?1 for LiMnPO4/C. Moreover, the Fe/Cr-substituted sample showed good cycle stability and rate performance. The capacity retention of LiFe0.4Mn0.595Cr0.005PO4/C was 98.84 % over 100 charge-discharge cycles, while it was only 86.64 % for the pristine LiMnPO4/C. These results indicated that Fe/Cr substitution enhanced the electronic conductivity for the prepared sample and facilitated the Li+ diffusion in the structure. Furthermore, LiFe0.4Mn0.595Cr0.005PO4/C composite presented high energy density (606 Wh kg?1) and high power density (574 W kg?1), thus suggested great potential application in lithium ion batteries (LIBs).  相似文献   

3.
By introducing nickel chemical into the precursor sol of LiFePO4, a series of Ni-doped LiFePO4 composite cathode materials, denoted as LiFe1???x Ni x PO4/C (x?=?0, 0.01, 0.03, 0.05 and 0.10) were prepared by a spray drying–carbothermal approach. The materials were characterized with X-ray diffraction (XRD), scanning electron microscope (SEM), and electrochemical impedance spectrum etc. It is found that the doping of nickel with appropriate amount caused a slight shift of diffraction peaks towards higher angles and enhanced the dispersion of nanoprimary particles, which could be observed from their XRD patterns and SEM images. For the sample with 3 mol% Ni doing, the charge transfer resistance reduced from 52.4?Ω of LiFePO4 to 18.7?Ω of LiFe0.97Ni0.3PO4/C, and the potential interval of the redox peaks reduced from 0.51 to 0.40 V, indicating the better reversible of Ni-doped materials. For the sample LiFe0.97Ni0.03PO4/C, its initial discharge capacities at various rates are 169.2 (0.2 C), 156.2 (1.0 C), 147.9 (2.0 C), 135.5 (5.0 C), and 94.0 (10.0 C)?mAh g?1, respectively, enhanced by 55.2 % (at 5.0 C) and 82.1 % (at 10.0 C) compared with LiFePO4. Furthermore, after 200 cycles of charge/discharge at 0.5 C, the capacity of LiFe0.97Ni0.03PO4/C only decreased 8.8 %, but over 25 % decrease was observed for LiFePO4/C.  相似文献   

4.
Fuwei Mao  Dongchen Wu  Zhufa Zhou  Shumei Wang 《Ionics》2014,20(12):1665-1669
In this study, LiFe1???3x/2Bi x PO4/C cathode material was synthesized by sol–gel method. From XRD patterns, it was found that the Bi-doped LiFePO4/C cathode material had the same olivine structure with LiFePO4/C. SEM studies revealed that Bi doping can effectively decrease the particle sizes. It shortened Li+ diffusion distance between LiFePO4 phase and FePO4 phase. The LiFe0.94Bi0.04PO4/C powder exhibited a specific initial discharge capacity of about 149.6 mAh g?1 at 0.1 rate as compared to 123.5 mAh g?1 of LiFePO4/C. EIS results indicated that the charge-transfer resistance of LiFePO4/C decreased greatly after Bi doping.  相似文献   

5.
The high-voltage spinel is a promising cathode material in next generation of lithium-ion batteries. Samples LiNi0.5???xMn1.5?+?xO4 (x?=?0, 0.05, 0.1) are synthesized by a simple co-precipitation method, in which pH value and temperature conditions do not need control. In the simple co-precipitation method, NaHCO3 solution is poured into transition metal solution to produce precursor. Ni and Mn are distributed uniformly in the products. The as-prepared samples are composed of ~?200 nm primary particles. Samples LiNi0.5???xMn1.5?+?xO4 (x?=?0, 0.05, 0.1) are also tested to study the effects of different Ni/Mn ratios. Sample LiNi0.5Mn1.5O4 delivers discharge capacities of 130 mAh g?1 at 0.2 C. The decreasing of Ni/Mn ratio in samples reduces specific capacity. With the decreasing of Ni/Mn ratios in spinel, amount of Mn3+ are increased. Attributed to its high Mn3+ contents, sample LiNi0.4Mn1.6O4 delivers the highest discharge capacity of 106 mAh g?1 at a large current density of 15 C, keeping 84.5% of that at 0.2 C rate. With the increasing of Ni/Mn ratios in spinel, cycling performance is improved. Sample LiNi0.5Mn1.5O4 shows the best cycling stability, keeping 94.4% and 90.4% of the highest discharge capacities after 500 cycles at 1 C and 1000 cycles at 5 C.  相似文献   

6.
LiFe1 − xMnxPO4 olivines are promising material for improved performance of Li‐ion batteries. Spin–phonon coupling of LiFe1 − xMnxPO4 (x = 0, 0.3, 0.5) olivines is studied through temperature‐dependent Raman spectroscopy. Among the observed phonon modes, the external mode at ~263 cm−1 is directly correlated with the motions of magnetic Fe2+/Mn2+ ions. This mode displays anomalous temperature‐dependent behavior near the Néel temperature, indicating a coupling of this mode with spin ordering. As Mn doping increases, the anomalous behavior becomes clearly weaker, indicating the spin–phonon coupling quickly decreases. Our analyses show that the quick decrease of spin–phonon coupling is due to decrease of the strength of spin–phonon coupling, but not change of spin‐ordering feature with Mn doping. Importantly, we suggest that the low electrochemical activity of LiMnPO4 is correlated with the weak spin–phonon coupling strength, but not with the weak ferromagnetic ground state. Our work would play an important role as a guide in improving the performances of future Li‐ion batteries. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
Magnetization and Mössbauer studies have been made for understanding magnetic behavior of three double perovskite systems La1.5Ca1.5Mn2???x Fe x O7 corresponding to x = 0.05, 0.10 and 0.50. These have been prepared following sol–gel route. Substitution of Fe does not lead to any major change in the tetragonal cell but increased iron leads to greater distortion in octahedral site. The three samples undergo paramagnetic–ferromagnetic transition. Curie temperature (T c) for the system with 0.05 Fe is ~150 K which is lower than (190 K) for the system without iron; with 0.50 Fe T c goes below 50 K. Iron goes as Fe3?+? and replaces Mn in ab plane. With increasing Fe the valence states of Mn get re-distributed in a way that number of the Jahn–Teller ions Mn3?+? increases and that of the pairs of Mn3?+?–O–Mn4?+? experiencing double exchange decreases.  相似文献   

8.
本文用DFT计算方法研究了LiFexMn1-xPO4的热力学稳定性和嵌/脱锂电位. 结果表明,LiFexMn1-xPO4固溶体的自由能比相分离的LiFePO4/LiMnPO4混合物略高,这两种形式可能在实际LiFexMn1-xPO4材料中共存. 计算表明,LiFexMn1-xPO4固溶体的嵌/脱锂电位随锰/铁比以及过渡金属离子的空间排列而变化,并用计算结果解释了放电曲线的形状. 采用固相反应法合成了LiFexMn1-xPO4材料并研究了其电化学性质,实验中观察到附加的放电平台,其出现可能与LiFexMn1-xPO4固溶体的存在有关.  相似文献   

9.
The olivine-type LiFe1-x Y x PO4/C (x?=?0, 0.01, 0.02, 0.03, 0.04, 0.05) products were prepared through liquid-phase precipitation reaction combined with the high-temperature solid-state method. The structure, morphology, and electrochemical performance of the samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), energy-dispersive spectroscopy (EDS), galvanostatic charge-discharge, cyclic voltammetry, and electrochemical impedance spectroscopy (EIS). We found that the small amount of Y3+ ion-doped can keep the microstructure of LiFePO4, modify the particle morphology, decrease charge transfer resistance, and enhance exchange current density, thus enhance the electrochemical performance of the LiFePO4/C. However, the large doping content of Y3+ ion cannot be completely doped into LiFePO4 lattice, but existing partly in the form of YPO4. The electrochemical performance of LiFePO4/C was restricted owing to YPO4. Among all the doped samples, LiFe0.98Y0.02PO4/C showed the best electrochemical performance. The LiFe0.98Y0.02PO4/C sample exhibited the initial discharge capacity of 166.7, 155.8, 148.2, 139.8, and 121.1 mAh g?1 at a rate of 0.2, 0.5, 1, 2, and 5 C, respectively. And, the discharge capacity of the material was 119.6 mAh g?1 after 100 cycles at 5 C rates.  相似文献   

10.
Mössbauer spectra of Co x Mn1?x Fe2O4 and Ni x Mn1?x Fe2O4 ferrites withx values ranging from 0·1 to 0·8 in steps of 0·1 have been recorded at room temperature. All spectra exhibit well-defined Zeeman hyperfine patterns. It has been observed that hyperfine field at Fe3+ nucleus increases more rapidly by nickel substitution than by cobalt substitution. This has been explained in terms of exchange interactions and cation distribution in the spinels. Hyperfine fields, isomer shifts and quadrupole splittings have been determined.  相似文献   

11.
This paper addresses the synthesis structural and electrochemical properties of LiFe0.5Mn0.5PO4 electrode materials for Li-ion batteries. The charge–discharge reaction of Li/LiPF6-EC–DEC/LiFe0.5Mn0.5PO4 cell carried out at the 1-C rate shows a capacity retention of 128 mAh/g. The local structure of the delithiated Li x Fe0.5Mn0.5PO4 phases have been studied by Fourier transform infrared spectroscopy and magnetometry. Spectral features indicate that the structure of the delithiated phase remains in the orthorhombic system. The compositional dependence of the magnetic moment is found to be in quantitative agreement with the theoretical value predicted for oxidation of M 2+ ions in the high spin state. Paper presented at the 11th Euro-Conference on Science and Technology of Ionics, Batz-sur-Mer, France, 9–15 Sept. 2007  相似文献   

12.
Li1.1Mn2???2x Co x Ni x O4 (x?=?0, 0.075) spinel powders were successfully synthesized using a liquid stirred tank reactor method. The electrochemical performances of the undoped and doped spinels at 4.3 and 5 V were investigated by X-ray diffraction, field-emission scanning electron microscopy, and electrochemical impedance spectroscopy. The capacity of Li1.1Mn2???2x Co x Ni x O4 could be divided into two parts, with 4.3 V as the dividing line in the 3–5 V charge–discharge range. Low capacity and good cyclic performance were obtained when cycled in the 3–4.3 V range for the multi-doped Li1.1Mn2???2x Co x Ni x O4 spinel. In comparison with multi-doped spinel at 4.3 V, the results of the cyclic performance worsened at 5 V because the structure underwent further shrinkage, the charge transfer resistance rose and the electrolyte decomposed.  相似文献   

13.
Zhaohui Tang  Xinhai Li  Zhixing Wang 《Ionics》2013,19(11):1495-1501
Li-rich Mn-based Li[Li0.09Mn0.65*(0.91???x) Ni0.35*(0.91???x) Al x ]O2 cathode materials have been prepared by traditional solid-state reaction. The lattice parameters a, c, and V have decreased, but c/a increased with the increase of Al doping. All the samples show analogy morphology of a quasi-spherical shape. Li[Li0.09Mn0.591Ni0.319]O2 sample shows a higher initial discharge capacity of 239.4 mAh?g?1 at 20 mA?g?1, while Li[Li0.09Mn0.582Ni0.314Al0.015]O2 sample presents a higher discharge capacity of 170.1 mAh?g?1 and ratio of 72.0 % with 200 vs. 20 mA?g?1. The solid electrolyte interface resistance (R SEI) and charge transfer process resistance (R ct ) values are relatively smaller for Al-doped samples than those of non-doped samples. Almost no reduction is observed after 24-time cycles in different discharge rates for the samples prepared.  相似文献   

14.
To improve the performance of LiFePO4, LiFe1?x Mo x PO4/C (x?=?0, 0.005, 0.010, 0.015, 0.020, 0.025) cathode materials were synthesized via two-step ball milling solid-state reaction. The prepared samples were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy, cyclic voltammetry, electrochemical impedance spectra, and galvanostatic charge–discharge test. It is apparent from XRD analysis that Mo doping enlarges the interplanar distance of crystal plane parallel to [010] direction in LiFePO4. In other words, it widens one-dimensional diffusion channels of Li+ along the [010] direction. The results of electrochemical test indicate that the LiFe0.99Mo0.01PO4/C composite exhibits a discharge capacity of 144.8 mAh g?1 at 1 C rate, a decreased charge transfer resistance of 162.4 Ω and better reversibility of electrode reactions. The present synthesis route is promising and practical for the preparation of LiFePO4 materials.  相似文献   

15.
LiFe1???x Sm x PO4/C cathode materials were synthesized though a facile hydrothermal method. Compared with high-temperature solid-phase sintering, the method can allow for the fabrication of low Sm content (2 %), a scarce and expensive rare earth element, while the presence of an optimized carbon coating with large amount of sp2-type carbon sharply increases the material’s electrochemical performance. The high-rate dischargeability at 5 C, as well as the exchange current density, can be increased by 21 and 86 %, respectively, which were attributed to the fine size and the large cell parameter a/c as much. It should be pointed out that the a/c value will be increased for the LiFePO4 Sm-doped papered by both of the two methods, while the mechanism is different: The value c is increased for the front and the value a is decreased for the latter, respectively.  相似文献   

16.
Powders of Al substituted Ni-ferrites (NiAl x Fe2???x O4 x?=?0, 0.5, 1.0 and 1.5) were prepared using the calcination method. Mössbauer spectroscopy results of all samples show two well defined magnetic sextets corresponding to Fe3?+? ions in the A (tetrahedral) and B (octahedral) sites of the spinel structure. In addition, a quadrupole doublet with quadrupole splitting of (~0.53 mm/s) starts evolving upon Al substitution. This doublet is associated with a new Fe–Al-oxide phase. The X-ray diffraction patterns show, in addition to the original peaks, new peaks evolve and increase in intensity as the Al concentration increases, confirming the evolution of this new phase.  相似文献   

17.
The effect of stress action on pyrite–chalcopyrite galvanic corrosion was investigated using polarization curves and electrochemical impedance spectroscopy (EIS) measurements. When stress increased from 0 to 4?×?105 Pa, the corrosion current density of pyrite–chalcopyrite increased from 5.678 to 6.719 μA cm?2, and the corrosion potential decreased from 281.634 to 270.187 mV, accompanied by a decrease in polarization resistance from 25.09 to 23.79 Ω·cm2. EIS results show there have three time constants in the Nyquist diagrams, which indicated the presence of different steps during the corrosion process. Stress dramatically enhanced pyrite–chalcopyrite galvanic corrosion by affecting the Cu1???x Fe1???y S2 film and the double layer, whereas had little impact on the adsorption species. When the stress changed from 0 to 4?×?105 Pa, the pore resistance and capacitance of the Cu1???x Fe1???y S2 film, R p and Q p, changed by 25.72 and 72.28 %, respectively. The adsorption species resistance, R sl, and capacitance, Q sl, only changed by 9.77 and 2.31 %, respectively.  相似文献   

18.
Mg-doped-LMR-NMC (Li1.2Ni0.15-xMgxMn0.55Co0.1 O2) is synthesized by combustion method followed by fluorine doping by solid-state synthesis. In this approach, we substituted the Ni2+ by Mg2+ in varying mole percentages (x = 0.02, 0.05, 0.08) and partly oxygen by fluorine (LiF: LMR-NMC = 1:50 wt%). The synergistic effect of both magnesium and fluorine substitution on electrochemical performance of LMR-NMC is studied by electrochemical impedance spectroscopy and galvanostatic-charge-discharge cycling. Mg-F-doped LMR-NMC (Mg 0.02 mol) composite cathodes shows excellent discharge capacity of ~300 mAh g?1 at C/20 rate whereas pristine LMR-NMC shows the initial capacity around 250 mAh g?1 in the voltage range between 2.5 and 4.7 V. Mg-F-doped LMR-NMC shows lesser Ohmic and charge transfer resistance, cycles well, and delivers a stable high capacity of ~280 mAh g?1 at C/10 rate. The voltage decay which is the major issue of LMR-NMC is minimized in Mg-F-doped LMR-NMC compared to pristine LMR-NMC.  相似文献   

19.
Nanoparticles (NPs) of Fe3O4 and γFe2O3 synthesized by hydrothermal reaction were characterized by X-ray diffractometry (XRD), 57Fe-Mössbauer spectroscopy and field emission scanning electron microscopy (FE-SEM). A decrease in concentration of methylene blue (MB) aqueous solution due to bulk Fe0-NP γFe2O3 mixture with the mass ratio of 3:7 was measured by ultraviolet-visible light absorption spectroscopy (UV-Vis). The Mössbauer spectrum of NP Fe3O4 prepared from hydrothermal reaction was composed of two sextets with absorption area (A), isomer shift (δ) and internal magnetic field (H int) of 56.3 %, 0.34±0.03 mm s???1 and 49.0±0.30 T for tetrahedral (T d) FeIII, and 43.7 %, 0.66±0.11 mm s???1 and 44.0±0.71 T for octahedral (O h) FeII?+?III. The FeII/FeIII ratio was determined to be 0.280 for NP Fe3O4, giving ‘x’ of 0.124 in Fe3???xO4. These results show that NP Fe3O4 prepared by hydrothermal reaction was not regular but nonstoichiometric Fe3O4. Consistent results were observed for XRD patterns of NP Fe3???xO4 indicating sharp intense peaks at 2Θ of 30.2, 35.7 and 43.3° with a large linewidth of 0.44°, yielding the crystallite size of 29–37 nm from the Scherrer’s equation. Iso-thermal annealing of NP Fe3???xO4 at 250 °C for 30 min resulted in the precipitation of NP γFe2O3 with δ of 0.33±0.03 mm s???1 and H intof 46.4±0.27 T due to magnetic tetrahedral FeIII. The Debye temperature of NP Fe3???xO4 was respectively estimated to be 267±5.45 K for Fe $^{\mathrm{III}}(T_{\mathrm{d}})$ and 282±7.17 K for Fe $^{\mathrm{II+III}}(O_{\mathrm{h}})$ , both of which were smaller than that obtained for bulk Fe3O4 of 280±4.15 K and 307±5.70 K, indicating that the chemical environment of iron of NPs is less rigid than that of the bulk compounds. A leaching test using methylene blue (MB) and mixture of bulk Fe0-NP γFe2O3 (3:7) showed a remarkable decrease in MB concentration from 1.90 × 10???2 to 9.49 × 10???4 mM for 24 h with the first order rate constant (k MB) of 2.1 × 10???3 min???1. This result verifies that MB decomposing ability is enhanced by using NP γFe2O3 compared with the k MB of 1.1 × 10???4 min???1 previously obtained from the leaching test using MB and bulk mixture of Fe0???γFe2O3 (3:7).  相似文献   

20.
Kun Gao 《Ionics》2014,20(6):809-815
Li2Fe1?x Mn x SiO4/C (x?=?0, 0.1, 0.2, 0.3, 0.4, 0.5) are prepared by a vacuum solid-state reaction of SiO2, CH3COOLi·2H2O, FeC2O4·2H2O, and Mn(CH3COO)2·4H2O. The crystalline structures, morphologies, and electrochemical performances are analyzed contrastively by X-ray diffraction (XRD), scanning electron microscopy, galvanostatic charging–discharging, and electrochemical impedance spectroscopy (EIS). The XRD and EIS results prove that Mn doping may be beneficial to the battery performances of Li2FeSiO4 materials, by reducing the crystallite sizes, decreasing transfer impedance (R ct), and increasing Li-ion diffusion coefficient (D Li+). However, the galvanostatic charge–discharge results indicate that only Li2Fe0.8Mn0.2SiO4/C shows the improved performance; its initial discharge capacity can reach to 190.7 mAh g?1. All things considered, the increased impurities after Mn doping, decided by reference intensity ratio (RIR) method, seem to impose more negative effects on the Li2Fe1?x Mn x SiO4/C performances. Under this premises, the Mn-doped content is particularly important for Li2FeSiO4 materials prepared by the vacuum solid-state method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号