首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Caspases are key enzymes activated during the apoptotic machinery. Apoptosis as a way of programmed cell death becomes deregulated in some pathologies including cancer transformations, neurodegenerative, or autoimmune diseases. Most of the methods available for the detection of apoptosis and caspases provide qualitative information only or quantification data as an average from cell populations or cell lysates. Several reports point to the importance of more accurate single-cell analyses in biomedical studies due to heterogeneity at tissue as well as cell level. To meet these requirements, we developed a miniaturized device enabling detection and quantification of active caspase-3/7 in individual cells at a femtogram level (10?15 g). The active caspase-3/7 detection protocol is based on the bioluminescence chemistry commercially available as a Caspase-Glo? 3/7 reagent developed by Promega. As a model, we used human stem cells treated by camptothecin to induce apoptosis. Individual apoptotic cells were captured from a culture medium under a microscope and transferred by a micromanipulation system into a detection capillary containing 2 μl of the reagent. Cells without activation by camptothecin served as negative controls. The detection limit of active caspase-3/7 achieved in the miniaturized system was determined as 0.20 and limit of quantification as 0.65 of the amount found in a single apoptotic human stem cell. Such a sensitive method could have a wide application potential in laboratory medicine and related clinically oriented research. Figure
Bioluminescence detection assembly  相似文献   

2.
Optical rubbery ormosils sensor for the detection of ammonia   总被引:1,自引:0,他引:1  
Rubbery ormosil films with immobilized aminofluorescein (AF) were investigated to develop an optochemical sensor for the determination of ammonia in water. The gel precursors with tetramethoxysilane (TMOS) and dimethyldimethoxysilane (DiMeDMOS) were deposited on glass supports, and characterized in terms of response to pH, and to dissolved ammonia at constant pH. After preconditioning the sensing film was stable for 6 months. The detection limit for ammonia in water was 0.2 μg mL–1 (S/N 2), the response being linearly dependent on concentration in the range of 0.5 to 80 μg mL–1 ammonia. The response time was less than 5 min. The effects of sodium chloride concentration, temperature, and coexisting metal ions and compounds were investigated. Received: 22 December 2000 / Revised: 5 March 2001 / Accepted: 7 March 2001  相似文献   

3.
Optical rubbery ormosils sensor for the detection of ammonia   总被引:1,自引:0,他引:1  
Rubbery ormosil films with immobilized aminofluorescein (AF) were investigated to develop an optochemical sensor for the determination of ammonia in water. The gel precursors with tetramethoxysilane (TMOS) and dimethyldimethoxysilane (DiMeDMOS) were deposited on glass supports, and characterized in terms of response to pH, and to dissolved ammonia at constant pH. After preconditioning the sensing film was stable for 6 months. The detection limit for ammonia in water was 0.2 microg mL(-1) (S/N 2), the response being linearly dependent on concentration in the range of 0.5 to 80 microg mL(-1) ammonia. The response time was less than 5 min. The effects of sodium chloride concentration, temperature, and coexisting metal ions and compounds were investigated.  相似文献   

4.
A new optical polymer-based sensor was developed, which is able to recognize amines in organic solvents with high sensitivity. Thin polymer membranes were prepared and investigated, which contain a chromogenic functional dye (reactand) that shows a significant colour change during a reversible chemical reaction with the analyte. For that purpose the azo dye 4-trifluoroacetyl-4′-[N-(methacryloxyethyl)-N-(ethyl)amino]-azobenzene (CR-465) was synthesized, which contains a trifluoroacetyl moiety (receptor for interaction with amines) and in addition, a polymerizable methacrylate group. The methacrylate group links the dye covalently to the polymer matrix and the receptor recognizes the analyte via covalent binding. For immobilisation of the dye cross-linked methacrylate polymers with different composition were used. The highly cross-linked polymer network was stable against most organic solvents and exhibited enhanced stability against mechanical strain compared to plasticized PVC. The sensitivity of the reaction between the analyte and the dye was tailored by the choice of the solvent in which the analysis of the sensor layer was performed, with equilibrium constants for 1-butylamine ranging from 80 to 2000 M−1 in chloroform and DMSO, respectively. In toluene as the solvent, sensor layers typically exhibited equilibrium constants of 100 M−1 for 1-butylamine, 1300 M−1 for 1,4-diaminobutane and 20,000 M−1 for tris-(2-aminoethyl)amine. We have also investigated the cross-linked sensor layers with respect to molecular imprinting and did not find any enhancement in selectivity through imprinting in the presence of different analyte molecules.  相似文献   

5.
Nelson EM  Kurz V  Shim J  Timp W  Timp G 《The Analyst》2012,137(13):3020-3027
We assert that it is possible to trap and identify proteins, and even (conceivably) manipulate proteins secreted from a single cell (i.e. the secretome) through transfection via electroporation by exploiting the exquisite control over the electrostatic potential available in a nanopore. These capabilities may be leveraged for single cell analysis and transfection with single molecule resolution, ultimately enabling a careful scrutiny of tissue heterogeneity.  相似文献   

6.
Balaji T  Sasidharan M  Matsunaga H 《The Analyst》2005,130(8):1162-1167
A low cost, solid optical sensor for the rapid detection of low concentrations of Hg2+ in aqueous media was prepared by the monolayer functionalization of mesoporous silica with 5,10,15,20-tetraphenylporphinetetrasulfonic acid (TPPS), anchored by N-trimethoxysilylpropyl-N,N,N-trimethylammonium chloride (TMAC). The detection is based on the color change of TPPS from orange to green as a result of the formation of a charge-transfer complex with Hg2+. The intensity of the charge-transfer band varies linearly with Hg2+ in the concentration range from zero to 2.5 x 10(-7) mol dm(-3). The lower detection limit observed for Hg2+ concentration is 1.75 x 10(-8) mol dm(-3). The material exhibits good chemical and mechanical stability, and did not show any degradation of TPPS for a period of eight months. The sensor was applied for the analysis of various environmental samples. The effects of pH, sample volume, reaction time, amount of material, and the presence of foreign ions on the detection method are discussed.  相似文献   

7.
The lowest excited electronic state of molecular oxygen, singlet molecular oxygen, O(2)(a (1)Delta(g)), is a reactive species involved in many chemical and biological processes. To better understand the roles played by singlet oxygen in biological systems, particularly at the sub-cellular level, optical tools have been developed to create and directly detect this transient state in time- and spatially-resolved experiments from single cells. Data obtained indicate that, contrary to common perception, this reactive species can be quite long-lived in a cell and, as such, can diffuse over appreciable distances including across the cell membrane into the extracellular environment. On one hand, these results demonstrate that the behavior of singlet oxygen in an intact cell can be significantly different from that inferred from model bulk studies. More generally, these results provide a new perspective for mechanistic studies of intra- and inter-cellular signaling and events that ultimately lead to photo-induced cell death.  相似文献   

8.
Cobalt(II) chloride in gelatin is cast as films on the surface of 600-μm optical fibers. The absorption of these films at 680 nm is measured through the fiber by internal reflection spectroscopy to determine the relative humidity of air between 40% and 80%. The spectrum of cobalt chloride on the fiber is similar to a transmission spectrum rather than an attenuated totla reflection (a.t.r.) spectrum because of the refractive index of the film, which is slightly greater than that of the fiber. Consequently, the spectrum is less sensitive to measurements near the critical angle, and to refractive index changes than is the case with an a.t.r. spectrum. The uptake of water by cobalt chloride at different humidities suggests that the spectral change is due to the formation of hydrates having molecules of bound water similar to those shown by the free salt.  相似文献   

9.
Three types of sensors for continuous determination of hydrogen peroxide (HP) are described. The working principles are based on the decomposition of HP by a catalyst and on the measurement of the amount of oxygen thereby produced. The change in oxygen tension is quantitatively determined via the quenching of the fluorescence of a silica gel-adsorbed dye entrapped in silicone rubber. Three methods were found to be useful for HP decomposition. In the first one, the enzyme catalase (which acts as the catalyst) is co-adsorbed onto silica gel and thus is in the same phase as the indicator. In the second one, the enzyme and the dye are adsorbed on different silica gel particles which then are incorporated into the polymer layer. In the third one, finely dispersed silver powder (another catalyst) is embedded in a silicone rubber layer that is spread over the oxygen sensing membrane. The sensor is capable of continuously recording HP in the 0.1 to 10.0 mM concentration range, with a precision of ±0.1 mM at 1 mM HP. Its response time varies from 2.5 to 5 min.  相似文献   

10.
An optical sensor for the measurement of salinity in seawater has been developed. It is based on a chloride-quenchable fluorescent probe (lucigenin) immobilized on a Nafion film. Two approaches for measuring salinity via chloride concentration are presented. In the first, a change in salinity corresponds to a change in the fluorescence intensity of lucigenin. In the second, the fluorescence intensity information is converted into a phase angle information by adding an inert phosphorescent reference luminophore (a ruthenium complex entrapped in poly(acrylonitrile) beads). Under these conditions, the chloride-dependent fluorescence intensity of lucigenin can be converted into a chloride-dependent fluorescence phase shift which serves as the analytical information. This scheme is referred to as dual lifetime referencing (DLR). The sensor was used to determine the salinity in seawater and brackish water of the North Sea.  相似文献   

11.
Direct optical detection of singlet oxygen from a single cell   总被引:1,自引:0,他引:1  
Singlet oxygen has been detected in single nerve cells by its weak 1270 nm phosphorescence (a1deltag --> X3sigmag-) upon irradiation of a photosensitizer incorporated in the cell. Thus, one can now consider the application of direct optical imaging techniques to mechanistic studies of singlet oxygen at the single-cell level.  相似文献   

12.
We investigated the cellular uptake behavior of non-fluorescent metal nanoparticles (NPs) by use of surface-enhanced Raman scattering (SERS) combined with dark-field microscopy (DFM). The uptake of Au NPs inside a single cell could also be identified by DFM first and then confirmed by z-depth-dependent SERS at micrometer resolution. Guided by DFM for the location of Au NPs, an intracellular distribution assay was possible using Raman dyes with unique vibrational marker bands in order to identify the three-dimensional location inside the single cell by obtaining specific spectral features. Au NPs modified by 4-mercaptobenzoic acid (MBA) bearing its –COOH surface functional group were used to conjugate transferrin (Tf) protein using the 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride (EDC) reaction. The protein conjugation reaction on Au surfaces was examined by means of color change, absorption spectroscopy, and SERS. Our results demonstrate that DFM techniques combined with SERS may have great potential for monitoring biological processes with protein conjugation at the single-cell level.  相似文献   

13.
A single element catalytic sensor based on SnO2:Pt catalyst has been made to detect liquefield petroleum gas (LPG) at ppm level. In this paper, catalytic sensor preparation, characterization and testing with LPG concentrations are reported.  相似文献   

14.
Solid-phase cytometry (SPC) is a novel technique that allows rapid detection of bacteria at the single cell level, without the need for a growth phase. After filtration of the sample, the retained microorganisms are fluorescently labeled on the membrane filter and automatically counted by a laser scanning device. Each fluorescent spot can be visually inspected with an epifluorescence microscope connected to the ChemScan by a computer-driven moving stage. Depending on the fluorogenic labels used, information on the identity and the physiological status of the microorganisms can be obtained within a few hours. Although SPC was originally recommended for the determination of the total viable microbial count in water and other liquid samples, it may also be a promising technique for the detection and enumeration of bacteria in food samples, provided they can be isolated from the unfilterable matrix. The short detection time inherent in this approach is a considerable advantage over conventional plate counting, especially for slow-growing microorganisms. The basic principles of SPC are discussed as well as its potential for the detection of Mycobacterium paratuberculosis, a model example of a slow-growing bacterium in milk.  相似文献   

15.
Optical sensor systems for bioprocess monitoring   总被引:3,自引:0,他引:3  
Bioreactors are closed systems in which microorganisms can be cultivated under defined, controllable conditions that can be optimized with regard to viability, reproducibility, and product-oriented productivity. To drive the biochemical reaction network of the biological system through the desired reaction optimally, the complex interactions of the overall system must be understood and controlled. Optical sensors which encompass all analytical methods based on interactions of light with matter are efficient tools to obtain this information. Optical sensors generally offer the advantages of noninvasive, nondestructive, continuous, and simultaneous multianalyte monitoring. However, at this time, no general optical detection system has been developed. Since modern bioprocesses are extremely complex and differ from process to process (e.g., fungal antibiotic production versus mammalian cell cultivation), appropriate analytical systems must be set up from different basic modules, designed to meet the special demands of each particular process. In this minireview, some new applications in bioprocess monitoring of the following optical sensing principles will be discussed: UV spectroscopy, IR spectroscopy, Raman spectroscopy, fluorescence spectroscopy, pulsed terahertz spectroscopy (PTS), optical biosensors, in situ microscope, surface plasmon resonance (SPR), and reflectometric interference spectroscopy (RIF).  相似文献   

16.
It is the first report of direct, in situ detection of carotenoids at the subcellular level by using Raman microspectroscopy. Single crystals sequestered in a carrot cell were measured using FT-Raman spectrometer equipped with a microscope and 40× objective. The observed characteristic bands centered at 1518 cm−1 and 1156 cm−1 proved the crystals were composed of carotenoids with β-carotene being predominant. The obtained results show the potential of Raman microspectroscopy for identification and analysis of compounds localized in cytoplasm by taking measurements directly from a single plant cell.  相似文献   

17.
Polyphenol oxidases from eggplant have a high catalytic activity for the aerobic oxidation of catechol to o-quinone with selectivity over other phenolic substrates. An amperometric biosensor can therefore be constructed by incorporating selected portions of eggplant tissue in a carbon paste electrode. The proposed biosensor provides a selective response for catechol in the micromolar range, with a very fast response time and a useful lifetime of at least 3 weeks.  相似文献   

18.
We have studied stable transformed human mammary cell lines with highly inducible steroid receptor-mediated luciferase reporter gene expression. Cells responding specifically to glucocorticoids, progestagens, androgens, or estrogens are described and characterized. The use of this high-throughput, cell-based assay for analysis of steroid (ant)agonists is reported. Systematic characterization of endocrine-disrupting activity on human receptors and in a human-cell system is interpreted for a selection of xenobiotics. We show that the phytoestrogens apigenin and genistin have progestagenic and androgenic activity, respectively. Finally, application of cell-based assays to the analysis of environmental samples is discussed.  相似文献   

19.
A new label-free method for the detection of apoptosis was proposed based on colorimetric assay of caspase-3 activity using an unlabeled Asp-Glu-Val-Asp (DEVD)-containing peptide substrate and unmodified gold nanoparticles (AuNPs).  相似文献   

20.
A sensor for the continuous monitoring of pH in sea water, having the configuration of a probe, is described. The characteristics of this probe, which uses phenol red adsorbed on Amberlite resin as a chemichromatic element on top of an optical fibre, are reported and the effects of interfering parameters (variable salinity and temperature of sea water) are assessed. The possibility of enhancing the working range is discussed, and a procedure for rendering the range suitable for marine monitoring is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号