首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Nickel foam and five nickel foam-based composite electrodes were prepared for being used as anode materials for the electrooxidation of methanol in KOH solution containing 0.1 and 1.0 M of methanol. The layered electrodes composed of nickel foam, platinum nanoparticles, polyaniline (PANI) and/or porous carbon (C) prepared in various assemblies. As shown by SEM analysis, depending on the preparation conditions, the electrodes of different morphologies were obtained. Using the cyclic voltammetry method, the oxidation of methanol on nickel foam electrode was observed in the potential range 0.4 V ↔ 0.7 V, where the Ni(OH)2/NiOOH transformation occurred. The presence of Pt particles in electrode gave rise to the increase in electrocatalytic activity in this potential range. For electrodes containing dispersed platinum catalyst (Ni/Pt, Ni/PANI/Pt and Ni/C/Pt), the oxidation of methanol was noted also in the potential range −0.5 V ↔ 0.1 V. The electrocatalytic activities of the examined electrodes toward methanol oxidation at low potentials were in order Ni/Pt > Ni/C/Pt > Ni/PANI/Pt, whereas at high potentials in order Ni/PANI/Pt > Ni/Pt> Ni/C/Pt > Ni. Among the examined electrodes, the most resistant to cyclic poisoning appeared to be the Ni/C/Pt electrode. Presented at the 4Th Baltic Conference on Electrochemistry, Greifswald, March 13–16, 2005  相似文献   

2.
高性能低成本的担载型铂基催化剂是直接甲醇燃料电池(DMFC)实用化过程中的一大挑战.利用高比表面积、高稳定性、容易负载金属的载体实现 Pt颗粒的高度分散,既可提高催化剂的催化性能,又可提高 Pt的利用率以降低成本,是担载型 Pt基催化剂实用化的有效途径.碳材料是一种常用的催化剂载体,近年来我们课题组发展了一种高性能的碳纳米笼材料,并可通过异原子掺杂调变其表面性能,提高其活性和负载能力.我们采用原位氧化镁模板法制备氮掺杂碳纳米笼:以具有多级结构的碱式碳酸镁作为氧化镁模板的前体,吡啶为碳源和氮源,经高温热解沉积,在原位形成的氧化镁模板表面形成氮掺杂的石墨化碳纳米薄层;经稀盐酸浸泡并洗涤,获得高纯度的氮掺杂碳纳米笼.氮掺杂碳纳米笼具有分等级的微纳米结构、高导电性、高比表面积和可调变的孔结构,结合表面氮原子的锚钉作用,氮掺杂碳纳米笼有望成为电化学催化剂 Pt的优良载体.
  在前期研究基础上,本文探索多级结构氮掺杂碳纳米笼(hNCNC)作为新型载体负载 Pt的能力,并评价所构建的负载型催化剂 Pt/hNCNC的电催化性能.通过简便的微波辅助多元醇还原法,将氯铂酸还原成 Pt纳米粒子负载于 hNCNC的表面.为了揭示氮掺杂的效应,我们对比研究了具有相似分级结构但无掺杂的碳纳米笼(hCNC)以及商业化活性炭(Val-can XC-72)作为载体的情况.经热重(TG)和 X射线光电子能谱(XPS)分析,三种催化剂 Pt/hNCNC、Pt/hCNC和 Pt/XC-72的负载量均接近理论负载量(23.1 wt%),都主要以金属态存在.然而,扫描电子显微镜(SEM)和透射电子显微镜(TEM)结果表明, Pt/hNCNC的 Pt分散状态优于 Pt/hCNC,更远优于 Pt/XC-72. Pt/hNCNC的平均 Pt粒径最小,仅约3.3 nm.这种良好的分散状态主要得益于氮原子掺杂,高负电性的氮原子改变了局域的表面极性,有利于 Pt颗粒的成核,也有利于固定 Pt颗粒.
  由于 hNCNC对 Pt的优异分散能力, Pt/hNCNC表现出高的电化学活性面积.氢吸附和一氧化碳溶出伏安曲线表明, Pt/hNCNC的电化学活性面积高于 Pt/hCNC和 Pt/XC-72,这与显微观察和 X射线衍射(XRD)结果相吻合. Pt/hNCNC展现出优异的甲醇电催化氧化活性和高稳定性,其催化电流明显高于 Pt/hCNC和 Pt/XC-72,电流衰减亦慢于 Pt/hCNC和 Pt/XC-72. hNCNC的分级微纳米结构有利于孔内传质和电子输运,从而提高反应速度. hNCNC的氮掺杂有利于 Pt在载体表面的分散,增强了载体-金属相互作用,提高了电化学活性面积和催化活性.为了进一步考察 hNCNC对 Pt的负载能力,本文还考察了高负载量 Pt/hNCNC的性能.在负载量高达60 wt%时, Pt/hNCNC中的 Pt颗粒仍无明显聚集,其甲醇氧化电流增加了30%,可以有效提高 DMFC的输出电流密度.
  综上可见, hNCNC可以有效分散并稳定 Pt颗粒,从而提高电化学活性面积和甲醇电催化氧化活性,优于未掺杂的碳纳米笼和传统碳材料,展示了 hNCNC高分散 Pt颗粒用作 DMFC的高效阳极催化剂的重要前景,也表明 hNCNC有望成为应用广泛的新型载体.  相似文献   

3.
In the present work, results of the interaction between methanol and oxidized platinum surfaces as studied via transients of open-circuit potentials are presented. The surface oxidation before the exposure to interaction with 0.5 M methanol was performed at different polarization times at 1.4 V vs reversible hydrogen electrode (RHE). In spite of the small changes in the initial oxide content, the increase of the pre-polarization time induces a considerable increase of the time needed for the oxide consumption during its interaction with methanol. The influence of the identity of the chemisorbing anion on the transients was also investigated in the following media: 0.1 M HClO4, 0.5 M H2SO4, and 0.5 M H2SO4 + 0.1 mM Cl. It was observed that the transient time increases with the energy of anion chemisorption and, more importantly, without a change in the shape of the transient, meaning that free platinum sites are available at the topmost layer all over the transient and not only in the potential region of small oxide ‘coverage’. The impact of the pre-polarization time and the effect of anion chemisorption on the transients are rationalized in terms of the presence of surface and subsurface oxygen driven by place exchange.
Hamilton VarelaEmail:
  相似文献   

4.
杨慧敏  张佰艳  张斌  高哲  覃勇 《催化学报》2018,39(6):1038-1043
甲醇燃料电池作为一种清洁、高效的能源转化形式广受关注. 贵金属 Pt 是甲醇燃料电池阳极催化剂不可缺少的活性组分, 但 Pt 价格昂贵, 易与 CO 等中间体强相互作用而中毒失活, 从而限制了甲醇燃料电池的广泛应用. 因此, 如何提高Pt 的利用率成为一个关键问题. 研究表明, 在碳材料载体中掺杂氮元素, 改变了载体本身的表面结构和电子性质, 有利于Pt 颗粒的成核和生长, 可获得尺寸小、分布均匀的 Pt 纳米颗粒, 能显著提升催化反应活性和 Pt 利用率. 然而, 传统的氮掺杂方法需要在高温、高压及氨气条件下进行, 增加了催化剂制备难度和成本.原子层沉积技术是逐层超薄沉积技术, 能够在原子级别精确控制膜的厚度, 既可制备尺度均一、高度可控的纳米粒子,也能实现材料表面的可控超薄修饰. 本课题组利用原子层沉积技术优势, 首先在碳纳米管表面沉积了直径 2 nm 左右的 Pt纳米颗粒, 然后在 Pt 纳米颗粒外表面超薄修饰聚酰亚胺膜, 通过后处理得到多孔掺氮碳膜修饰的 Pt/CNTs 催化剂. 碳膜的厚度可简单通过调控聚酰亚胺膜的沉积厚度来控制. 结果表明, 适当厚度的碳膜修饰 Pt/CNTs 催化剂可显著提升其甲醇电氧化性能, 电流密度可达商业 20% Pt/C 的 2.7 倍, 催化剂稳定性也显著改善. 然而碳膜修饰过厚会导致催化剂活性降低.通过计算催化剂电化学活性表面积发现, 超薄修饰碳膜后催化剂活性表面积有所降低, 这是由于碳膜的覆盖导致表面 Pt原子数减少. 修饰前后催化剂颗粒尺度变化不大, 推测催化剂活性的提高与形成了有利于催化反应的 Pt-碳膜界面有关.然而, 当碳膜修饰层过厚时, 会导致反应物分子难以扩散到 Pt 颗粒表面, 使催化剂活性降低. 预吸附单层 CO 溶出实验结果表明, 多孔掺氮碳膜超薄修饰 Pt/CNTs 催化剂后, CO 氧化峰的起始电位和峰值电位都向低电位处偏移, 这表明 Pt 表面吸附的 CO 在较低电位下即可被氧化, CO 更容易从 Pt 表面移除, 从而提高了催化剂的抗 CO 毒化能力. X 射线光电子能谱实验结果进一步表明, 经多孔掺氮碳膜修饰后, Pt 的 4f 电子向高结合能处偏移, 表明 Pt 原子周围的电子密度减小, 从而弱化了 Pt 对 CO 吸附的σ-π键反馈作用, 即减弱了 Pt 原子对 CO 的吸附, 这是导致掺氮碳膜修饰后催化剂活性及稳定性都大幅提高的原因.  相似文献   

5.
Gold and silver electromagnetic nanoresonators covered by a thin layer of platinum are often used to study adsorption of various molecules on “model platinum surfaces” with surface-enhanced Raman scattering (SERS) spectroscopy. In this contribution spectra of pyridine adsorbed on films formed from core–shell Ag@Pt and Ag@Ag–Pt nanoparticles and pure Pt or Ag nanoparticles were measured using a confocal Raman microscope. The SERS spectra of pyridine adsorbed on alloy Ag@Ag–Pt nanoparticles could not be obtained as a linear combination of spectra measured on pure Ag and Pt surfaces. In other words, for silver electromagnetic nanoresonators covered by platinum there is no simple correlation between the “quality” of the deposited Pt layer and the relative intensity of SERS bands characteristic for adsorbate interacting with silver. The SERS spectra accumulated from various places of a film formed from Ag@Pt or Ag@Ag–Pt nanoclusters may differ significantly. Using Ag@Pt nanoparticles with practically negligible amount of Ag on the surface (as per the stripping measurement), it is possible to record SERS spectrum in which the contribution characteristic for pyridine adsorbed on the Ag surface is well visible. It means that, even for macroscopic samples of core–shell Ag–Pt nanoparticles, averaging of many spectra measured at various locations of the sample should be carried out to characterize reliably their properties.  相似文献   

6.
Pt纳米粒子由于其本身独特的物理、化学性质以及能够同时促进氧化和还原反应,在工业生产和商业设备中(尤其在直接甲醇燃料电池中)广泛用作重要的电催化剂.然而,Pt作为贵金属在自然界中的含量极其稀少,价格昂贵;另外,甲醇氧化反应中产生的中间产物CO很容易市Pt纳米粒子中毒而失活.因此,迫切需要一种Pt用量少,催化性能高的材料.一制备高活性比表面积的Pt纳米颗粒,可以有效提高Pt利用率.另外,调控纳米粒子使其裸露特定的晶面、边、角以及缺陷也能有效提升催化性能.还可以采用Pt纳米粒子结合其它金属元素形成双金属合金,如,Pt-M (M = Pd,Au,Ag,Ru,Fe,Co,Ni,等)催化剂,可以在减少Pt元素用量的同时有效提升催化活性.在众多可供选择的元素中,Pd相对于Pt价格低廉,但两者具有相近的物理、化学性质以及较高的电催化性能,使Pt-Pd纳米合金呈现十分优异的电催化性能.研究表明,Pt-Pd纳米合金在酸性和CO环境中能有效催化有机小分子电氧化过程.另外,在酸性环境中,用Pd替代Cu,Ag,Co或Ni,可以有效减少催化剂的腐蚀.本文在乙二醇溶液中同时还原K2PtCl4和Na2PdCl4,在110 ℃C反应5 h制备出超细的Pt-Pd纳米合金.通过X射线衍射(XRD)、透射电子显微镜(TEM)、高分辨透射电子显微镜(HRTEM)以及能谱仪(EDS)对合金进行表征,从而确定产物为尺寸4 nm左右的Pt-Pd纳米合金,且通过改变金属前驱体的投料比可以有效调控Pt-Pd合金组分(按元素比例分别表示为Pt1Pd3,Pt1Pd1,Pt3Pd1).采用循环伏安法、线性扫描伏安法以及计时安培法等多种手段测试样品在0.5 mol/L H2SO4和0.5 mol/L CH3OH的酸性环境中(50 mV/s)电化学性能,并与商业Pt/C进行比较.结果表明,合金的催化性能和组分密切相关,当Pt元素的含量为75%左右时,Pt-Pd纳米合金表现出最佳的催化活性和稳定性,其中Pt3Pd1的电催化质量活性可达商业Pt/C的7倍之多.我们把Pt-Pd纳米合金的催化性能对其组分的依赖性归结为甲醇氧化反应中的双官能团机制,反应中,Pt可有效催化甲醇脱氢产生Pt-CO,Pd则催化水脱氢形成Pd-OH.当Pd含量减少时,Pt表面的水脱氢反应只有在高电位才能发生,从而降低催化效率;而Pd含量过多,则会抑制Pt催化甲醇的脱氢反应,使催化效率大大降低.因此,只有适宜Pt/Pd比例,才能有效提升催化效率.  相似文献   

7.
Organic molecule neutral red (NR), as electron transfer mediator, was introduced in the anodic electrocatalyst system for methanol oxidation and the resulting electrode was investigated by cyclic voltammetry, polarization method, and electrochemical impedance spectroscopy. For the same loading mass of platinum catalyst, 1.25 times larger exchange current density, 1.83 times higher specific activity, and better long-term cycle stability can be obtained at Pt/NR/graphite electrode, as compared to the electrode without NR. These results indicate that neutral red plays an important role on the enhanced electrocatalytic activity of platinum catalyst for methanol oxidation.  相似文献   

8.
To develop better and cheaper electrocatalysts for the oxidation of methanol in direct methanol fuel cells, several combinations of a conductive polymer polyaniline (PANI) and dispersed metal particles such as Pt and Sn were examined. The anodic current for the methanol oxidation (i MeOH) showing the electrocatalytic activity of Pt particles was remarkably enhanced when the particles were dispersed on PANI films that should provide higher surface areas for the dispersed particles. The activity strongly depended on the morphology and the electric conductivity of the PANI films electropolymerized in five different acid solutions: H2SO4, HNO3, HClO4, HBF4, and HCl. The highest activity was achieved using the dispersed Pt particle on PANI film electropolymerized from H2SO4 polymerizing solution. In order to reduce the dispersed amount of the expensive Pt particles, other metal particles were pre-dispersed on the PANI film prepared from the H2SO4 polymerizing solution, and then Pt particles were dispersed on the film. Among the pre-dispersed metal particles attempted here (Sn, Cu, Cr, Ni, In, Co, Sb, Bi, Pb, and Mn), the highest activity was obtained with Sn particles. When the ratio of dispersed Pt to Sn particles ranges from 32:68 to 100:0, i MeOH is higher than that measured with the dispersed Pt particle on PANI films without the Sn particles. This means that the dispersed amount of the Pt particles could be reduced by utilizing dispersed Sn particles.  相似文献   

9.
Structural defects play major role in catalysis and electrocatalysis. Nanocrystalline (or nanostructured) materials composed of nanometer-sized crystallites joined via grain boundaries have been recognized for their specific structure and properties, differentiating them from single crystals, coarsely grained materials or nanometer-sized supported single-grained particles (Gleiter, Nanostruct Mater 1:1–19, 1992). In this paper, we use Pt electrodes, prepared by electrodeposition on glassy carbon and gold supports, as model nanocrystalline materials to explore the influence of grain boundaries and other structural defects on electrocatalysis of CO and methanol oxidation. We build on the recently established correlations between the nanostructure (lattice parameter, grain size, and microstrains) of electrodeposited Pt and the deposition potential (Plyasova et al., Electrochim. Acta 51:4447–4488, 2006) and use the latter to obtain materials with variable density of grain boundary regions. The activity of electrodeposited Pt in the oxidation of methanol and adsorbed CO exceeds greatly that for Pt(111), polycrystalline Pt, or single-grained Pt particles. It is proposed that active sites in nanostructured Pt are located at the emergence of grain boundaries at the surface. For methanol electrooxidation, the electrodes with optimal nanostructure exhibit relatively high rates of the “direct” oxidation pathway and of the oxidation of strongly adsorbed poisoning intermediate (COads), but not-too-high methanol dehydrogenation rate constant. These electrodes exhibit an initial current increase during potentiostatic methanol oxidation explained by the COads oxidation rate constant exceeding the methanol decomposition rate constant.
E. R. SavinovaEmail:
  相似文献   

10.
The electrochemical reduction of mesoxalic acid on polycristalline platinum surfaces has been studied in acid medium. The reaction proceeds through the interaction with adsorbed hydrogen atoms. Malonic acid is proposed as final reaction product.
Elektrochemische Reduktion von Mesoxalsäure auf polykristallinen Platinoberflächen
Zusammenfassung Die elektrochemische Reduktion von Mesoxalsäure auf polykristallinen Platinoberflächen wurde in saurem Medium untersucht. Die Reaktion verläuft über die Wechselwirkung mit adsorbierten Wasserstoffatomen, wobei als Endprodukt Malonsäure entsteht.
  相似文献   

11.
《中国化学快报》2019,30(9):1659-1662
The development of efficient methods for the detection of hazardous and toxic elements is extremely important for environmental security and public health. In this work, we developed a facile colorimetric assaying system for Ag+ detection in aqueous solution. Chitosan-stabilized platinum nanoparticles (Ch-PtNPs) were synthesized and severed as an artificial oxidase to catalyze the oxidation of the substrate 3,3′,5,5′-tetramethylbenzidine (TMB) and generate color signal. In the presence of Ag+, due to the strong metallophilic interactions between Ag+ and Pt2+ on the surface of Ch-PtNPs, Ag+ can weaken the affinity to the substrates and inactivate the catalytic activity of Ch-PtNPs, leading to decreased absorbance signal to varying degrees depending on Ag+ amount. Combing the specific binding between Ch-PtNPs and Ag+ with signal amplification procedure based on the Ch-PtNPs-catalyzed TMB oxidation, a sensitive, selective, simple, cost-effective, and rapid detection method for Ag+ can be realized. Ag+ ions in tap and lake waters have been successfully detected. We ensured that the proposed method can be a potential alternative for Ag+ determination in environmental samples.  相似文献   

12.
<正>The electrocatalytic oxidation of methanol at the platinum electrode modified with Eu-Fe cyanide-bridged binuclear complexes (Eu-Fe film) was investigated for the first time by cyclic voltammetry.Compared with the bare platinum electrode,the results showed that the modified electrode had excellent electrocatalytic activity for the oxidation of methanol;the oxidation peak potential shifted more negatively and the peak current increased about twenty times.The electrooxidation of methanol at the modified electrode with Eu-Fe cyanide-bridged binuclear complexes material exhibited the better tolerance capacity to poison of intermediate species;the peak current was proportional to the concentration of methanol in the range of 0.5-2.0mol/L (R~2 = 0.9991,n =7),which was a comparatively wider linear range.Moreover,based on the linear relationship between the peak current and the square root of scan rate,electrocatalytic oxidation process of methanol was confirmed to be a diffusion control process.Furthermore,according to the counting of electron transfer number(n_α) in the rate-limiting step and the slope of linear equation between acidity of electrolyte and the oxidation peak potential(E_p),the possible mechanism of the electrooxidation of methanol at the modified electrode was primarily discussed.  相似文献   

13.
建立了固体进样-直接测汞仪法测定银精矿中汞的分析方法。试样无需进行样品前处理,将银精矿试样直接称量于样品舟中,在氧气气氛中,试样在分解炉中经历干燥和高温热分解,汞被还原成汞原子,再被氧气流带进汞齐化管中进行汞齐化反应,其中的汞被选择性吸附,于900℃加热释放出汞蒸汽,,汞蒸气被氧气流带入单波长光学吸收池进行原子吸收测量,方法检出限为0.007μg/g,测定结果的相对标准偏差为1.77%~3.07%(n=11),加标回收率为98.08%~102.43%。方法操作简单、快速稳定、重现性良好,适合于银精矿中微量汞的测定。  相似文献   

14.
A facile colorimetric method for sensitive and selective detection of Ag+ is successfully developed based on the excellent oxidase-like activity of chitosan-stabilized platinum nanoparticles and the strong metallophilic Pt2+-Ag+ interactions.  相似文献   

15.
A simple layer-by-layer deposition technique was used to fabricate the multilayer thin films of unmodified silver triangular nanoplates(AgTNPs).The multilayer of AgTNPs thin films were fabricated by alternate deposition of each anionic sodium citrate stabilized AgTNPs and cationic poly(diallyldimethylammonium chloride).All prepared AgTNPs multilayer thin films were exhibited a strong plasmon band at the wavelength of 667 nm,which confirmed the formation of AgTNPs onto the substrate.The characteristics of the multilayer thin films were investigated using contact angle measurement,UV-visible spectroscopy,X-ray diffraction analysis(XRD),atomic force microscope(AFM)and field emission scanning electron microscope(FESEM).As these films are to be used as a mercury(II)colorimetric sensor,the changes in optical properties of the films were evaluated for various mercury(Ⅱ)concentrations.AgTNPs assembled into thin films showed a strong color shift from blue to mauve and colorless when exposed to mercury(Ⅱ).The constructed multilayer thin films exhibited excellent color changes of mercury(II) with a linear range between 0.5 and 20 ppm.The limit of detection(LOD) and limit of quantitation(LOQ) were 0.45 ± 0.002 and 1.52 ± 0.002 ppm,respectively.The recovery values of AgTNPs multilayer thin films are satisfactory in the range of 100.1%-106.4%when applied to determining mercury(Ⅱ) in water samples.  相似文献   

16.
由于副产物CO可降低纯Pt催化剂的活性,因此双金属Pt基催化剂已经广泛用于提高直接甲醇燃料电池的性能.本文合成了Pt-Pb六边形纳米板,作为模型催化剂用于甲醇氧化反应(MOR),并通过乙酸(HAc)处理进一步控制纳米板表面Pt和Pb的分布,从而得到Pt-Pb合金表面均相分布的Pt-Pb纳米板以及非均匀分布的HAc处理的Pt-Pb纳米板.结果表明,与HAc处理的Pt-Pb纳米板相比, Pt-Pb纳米板的MOR催化活性和稳定性提高,这主要是由于亲氧性Pb的加入提高了CO容忍度并修饰了Pt的电子结构.  相似文献   

17.
We explore here the ability of ruthenium hydroxo species to undergo spontaneous deposition on Pt nanoparticles and to form colloidal solutions of oxoruthenium-protected (-stabilized) nanoparticles of Pt. These particles can be spontaneously attracted to carbon substrates, and they form ultrathin self-assembled films. Fabrication of the multilayer network films on electrodes has been achieved by linking the positively charged oxoruthenium-covered Pt clusters with heteropolyanions of tungsten. By repeated alternate treatments in a solution of phosphododecatungstate (PW12O403–) and in a colloidal suspension of oxoruthenium-protected (-stabilized) Pt nanoparticles, the film thickness can be increased systematically (layer by layer) to form stable three-dimensional assemblies on carbon electrodes. It is apparent from cyclic voltammetric and chronoamperometric measurements (that were performed at 20 and 60 °C) that the resulting hybrid films show attractive properties towards the oxidation of methanol at fairly low potentials (0.25–0.4 V versus the saturated calomel electrode). With approximately the same loading of oxoruthenium-covered Pt nanoparticles and under analogous conditions, linking or derivatizing the nanoparticles with phosphotungstate leads to the systems higher electrocatalytic activity. It is possible that, in addition to ruthenium hydroxo species, PW12O403– exhibits an activating effect on dispersed Pt particles. An alternative explanation may involve the possibility of different morphologies of the catalytic films in the presence and absence of phosphotungstate anions.Dedicated to Zbigniew Galus on the occation of his 70th birthday  相似文献   

18.
Ruthenium and osmium were deposited in submonolayer amounts on Pt(111) single crystal surfaces using the previously reported ‘spontaneous deposition’ procedure [Chrzanowski et al., Langmuir, 13 (1997) 5974]. Such surfaces were first explored using ex situ scanning tunneling microscopy (STM) to image the deposition characteristics of ruthenium and osmium islands on Pt(111). It was found that, using the spontaneous deposition procedure, a maximum coverage of 0.20 ML ruthenium is formed on the surface after 120 s of exposure to a RuCl3 solution in 0.1 M HClO4. A homogeneous deposition on the Pt(111) surface was found, with no observed preferential deposition on step edges or surface defect sites. In contrast, in the spontaneous deposition of osmium, osmium clusters form preferentially at, though not limited to, surface defect sites and step edges. Osmium island deposition occurs at a greater rate than ruthenium on Pt(111), and possible explanations are presented. Methanol activity on the Pt(111)/Ru and Pt(111)/Os surfaces is also studied, using the coverage values determined to yield the highest activity for methanol electro-oxidation (0.20 ML coverage for Ru and 0.15 ML for Os). At potentials more negative than 0.40 V vs. RHE, the Pt(111)/Ru surface yields a higher surface activity than Pt(111)/Os. However, at potentials more positive than 0.04 V, Pt(111)/Os exhibits demonstrably higher surface activity. The relevance of this data is discussed and future avenues of interest are indicated.  相似文献   

19.
In this paper, a novel colorimetric biosensor for Hg2+ and DNA molecules is presented based on Hg2+ stimulated oxidase-like activity of bovine serum albumin protected silver clusters (BSA-Ag NCs). Under mild conditions, Hg2+ activated BSA-Ag NCs to show high catalytic activity toward the oxidation of 3,3′,5, 5′-tetramethylbenzidine (TMB) using ambient dissolved oxygen as an oxidant. The oxidase-like activity of BSA-Ag NCs was “switched-on” selectively in the presence of Hg2+, which permitted a novel and facile colorimetric sensor for Hg2+. As low as 25 nmol L−1 Hg2+ could be detected with a linear range from 80 nmol L−1 to 50 mmol L−1. In addition, the sensing strategy was also employed to detect DNA molecules. Hg2+ is known to bind very strongly and specifically with two DNA thymine bases (T) to form thymine–Hg2+–thymine (T–Hg2+–T) base pairs. The hairpin-structure was disrupted and Hg2+ ions were released after hybridization with the DNA target. By coupling the Hg2+ switched-on the oxidase-mimicking activity of BSA-Ag NCs, we developed a novel label-free strategy for facile and fast colorimetric detection of DNA molecules. More important, target DNA can be detected as low as 10 nmol L−1 with a linear range from 30 to 225 nmol L−1. Compared with other methods, this method presents several advantages such as the independence of hydrogen peroxide, high sensitivity and good selectivity, avoiding any modification or immobilization of DNA, which holds a great potential of metal NCs for clinical application in biosensing and biotechnology.  相似文献   

20.
《Electroanalysis》2005,17(10):869-872
Platinum (Pt) nanoparticles were electrochemically dispersed on 4‐aminobenzene monolayer‐grafted multi‐walled carbon nanotubes (MWNTs) by a potential‐step method. The structure and nature of the resulting Pt‐MWNT composites were characterized by transmission electron microscopy (TEM) and X‐ray diffraction (XRD). The electrocatalytic properties of Pt‐MWNT composites for methanol oxidation have been investigated by cyclic voltammetry (CV) and high electrocatalytic activity can be observed. This may be attributed to the small particle size, high dispersion of platinum particles and the particular properties of MWNT supports. The results imply that the Pt‐MWNT composites have good potential applications in direct methanol fuel cell (DMFC). Additionally, the long‐term cycling stability of platinum catalysts was also investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号