首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
3'磷酸肌醇依赖的激酶1(3'-phosphoinositide-dependent kinase1,PDK1)是--个63kDa的丝氨酸/苏氨酸(Ser/Thr)蛋白酶,它是Akt1的上游活化激酶~([1,2]).PDK1可在磷酸化的Akt1的Thr308位点使Akt1的活性增加30倍以上.但这种活化以依赖PIP3或PIP2的方式完成,PDK1也就因此而得名~([3]).  相似文献   

2.
Three-dimensional quantitative structure–activity relationship (3D-QSAR) studies were performed based on a series of azaindole carboxylic acid derivatives that had previously been reported as promising HIV-1 integrase inhibitors. Docking studies to explore the binding mode were performed based on the highly active molecule 36. The best docked conformation of molecule 36 was used as template for alignment. The comparative molecular field analysis (CoMFA) model (including steric and electrostatic fields) yielded the cross validation q 2 = 0.655, non-cross validation r 2 = 0.989 and predictive r 2 pred = 0.979. The best comparative molecular similarity indices analysis (CoMSIA) model (including steric, electrostatic, hydrophobic and hydrogen-bond acceptor fields) yielded the cross validation q 2 = 0.719, non-cross validation r 2 = 0.992 and predictive r 2 pred = 0.953. A series of new azaindole carboxylic acid derivatives were designed and the HIV-1 integrase inhibitory activities of these designed compounds were predicted based on the CoMFA and CoMSIA models.  相似文献   

3.
The inhibition of β-secretase (BACE1) is currently the main pharmacological strategy available for Alzheimer’s disease (AD). 2D QSAR and 3D QSAR analysis on some cyclic sulfone hydroxyethylamines inhibitors against β-secretase (IC50: 0.002–2.75 μM) were carried out using hologram QSAR (HQSAR), comparative molecular field analysis (CoMFA), and comparative molecular similarity indices analysis (CoMSIA) methods. The best model based on the training set was generated with a HQSAR q2 value of 0.693 and r2 value of 0.981; a CoMFA q2 value of 0.534 and r2 value of 0.913; and a CoMSIA q2 value of 0.512 and r2 value of 0.973. In order to gain further understand of the vital interactions between cyclic sulfone hydroxyethylamines and the protease, the analysis was performed by combining the CoMFA and CoMSIA field distributions with the active sites of the BACE1. The final QSAR models could be helpful in the design and development of novel active BACE1 inhibitors.  相似文献   

4.
5.
A major problem today is bacterial resistance to antibiotics and the small number of new therapeutic agents approved in recent years. The development of new antibiotics capable of acting on new targets is urgently required. The filamenting temperature-sensitive Z (FtsZ) bacterial protein is a key biomolecule for bacterial division and survival. This makes FtsZ an attractive new pharmacological target for the development of antibacterial agents. There have been several attempts to develop ligands able to inhibit FtsZ. Despite the large number of synthesized compounds that inhibit the FtsZ protein, there are no quantitative structure–activity relationships (QSAR) that allow for the rational design and synthesis of promising new molecules. We present the first 3D-QSAR study of a large and diverse set of molecules that are able to inhibit the FtsZ bacterial protein. We summarize a set of chemical changes that can be made in the steric, electrostatic, hydrophobic and donor/acceptor hydrogen-bonding properties of the pharmacophore, to generate new bioactive molecules against FtsZ. These results provide a rational guide for the design and synthesis of promising new antibacterial agents, supported by the strong statistical parameters obtained from CoMFA (r2pred = 0.974) and CoMSIA (r2pred = 0.980) analyses.  相似文献   

6.
Recently, we reported structurally novel PDE4 inhibitors based on 1,4-benzodiazepine derivatives. The main interest in developing bezodiazepine-based PDE4 inhibitors is in their lack of adverse effects of emesis with respect to rolipram-like compounds. A large effort has thus been made toward the structural optimization of this series. In the absence of structural information on the inhibitor binding mode into the PDE4 active site, 2D-QSAR (H-QSAR) and two 3D-QSAR (CoMFA and CoMSIA) methods were applied to improve our understanding of the molecular mechanism controlling the PDE4 affinity of the benzodiazepine derivatives. As expected, the CoMSIA 3D contour maps have provided more information on the benzodiazepine interaction mode with the PDE4 active site whereas CoMFA has built the best tool for activity prediction. The 2D pharmacophoric model derived from CoMSIA fields is consistent with the crystal structure of the PDE4 active site reported recently. The combination of the 2D and 3D-QSAR models was used not only to predict new compounds from the structural optimization process, but also to screen a large library of bezodiazepine derivatives.  相似文献   

7.
8.
The recent wide spreading of the H5N1 avian influenza virus (AIV) in Asia, Europe and Africa and its ability to cause fatal infections in human has raised serious concerns about a pending global flu pandemic. Neuraminidase (NA) inhibitors are currently the only option for treatment or prophylaxis in humans infected with this strain. However, drugs currently on the market often meet with rapidly emerging resistant mutants and only have limited application as inadequate supply of synthetic material. To dig out helpful information for designing potent inhibitors with novel structures against the NA, we used automated docking, CoMFA, CoMSIA, and HQSAR methods to investigate the quantitative structure-activity relationship for 126 NA inhibitors (NIs) with great structural diversities and wide range of bioactivities against influenza A virus. Based on the binding conformations discovered via molecular docking into the crystal structure of NA, CoMFA and CoMSIA models were successfully built with the cross-validated q (2) of 0.813 and 0.771, respectively. HQSAR was also carried out as a complementary study in that HQSAR technique does not require 3D information of these compounds and could provide a detailed molecular fragment contribution to the inhibitory activity. These models also show clearly how steric, electrostatic, hydrophobicity, and individual fragments affect the potency of NA inhibitors. In addition, CoMFA and CoMSIA field distributions are found to be in well agreement with the structural characteristics of the corresponding binding sites. Therefore, the final 3D-QSAR models and the information of the inhibitor-enzyme interaction should be useful in developing novel potent NA inhibitors.  相似文献   

9.
In the present work, three-dimensional quantitative structure–activity relationship (3-D QSAR) studies on a set of 70 anthranilimide compounds has been performed using docking-based as well as substructure-based molecular alignments. This resulted in the selection of more statistically relevant substructure-based alignment for further studies. Further, molecular models with good predictive power were derived using CoMFA (r 2?=?0.997; Q 2?=?0.578) and CoMSIA (r 2?=?0.976; Q 2?=?0.506), for predicting the biological activity of new compounds. The so-developed contour plots identified several key features of the compounds explaining wide activity ranges. Based on the information derived from the CoMFA contour maps, novel leads were proposed which showed better predicted activity with respect to the already reported systems. Thus, the present study not only offers a highly significant predictive QSAR model for anthranilimide derivatives as glycogen phosphorylase (GP) inhibitors which can eventually assist and complement the rational drug-design attempts, but also proposes a highly predictive pharmacophore model as a guide for further development of selective and more potent GP inhibitors as anti-diabetic agents.  相似文献   

10.
In order to understand the chemical-biological interactions governing their activities toward neuraminidase (NA), QSAR models of 28 thiazolidine-4-carboxylic acid derivatives with inhibitory influenza A virus were developed. The obtained HQSAR (hologram quantitative structure activity relationship), Topomer CoMFA and CoMSIA (comparative molecular similarity indices analysis) models were robust and had good exterior predictive capabilities. Moreover, QSAR modeling results elucidated that hydrogen bonds highly contributed to the inhibitory activity, then electrostatic and hydrophobic factors. Squared multiple correlation coefficients (R2) of HQSAR, Topomer CoMFA and CoMSIA models were 0.994, 0.978 and 0.996, respectively. Squared cross-validated correlation coefficients (Q2) of HQSAR, Topomer CoMFA and CoMSIA models were in turn 0.951, 919 and 0.820. Furthermore, squared multiple correlation coefficients for the test set (R2test) of HQSAR, CoMFA and CoMSIA models were 0.879, 0.912 and 0.953, respectively. Squared cross-validated correlation coefficients for the test set (Q2ext) of HQSAR, Topomer CoMFA and CoMSIA models were 0.867, 0.884 and 0.899, correspondingly.  相似文献   

11.
ABSTRACT

Several 3D-QSAR models were built based on 196 hepatitis C virus (HCV) NS5A protein inhibitors. The bioactivity values EC90 for three types of inhibitors, the wild type (GT1a) and two mutants (GT1a Y93H and GT1a L31V), were collected to build three datasets. The programs OMEGA and ROCS were used for generating conformations and aligning molecules of the dataset, respectively. Each dataset was randomly divided into a training set and a test set three times to reduce the contingency of only one random selection. QSAR models were computed by comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). For the datasets GT1a, GT1a Y93H, and GT1a L31V, the best models CoMFA-INDX, CoMSIA-SEHA, and CoMSIA-SEHA showed an r2 value of 0.682 ± 0.033, 0.779 ± 0.036, and 0.782 ± 0.022 on the test sets, respectively. From the contour maps of the three best models, we summarized the favourable and unfavourable substituents on the tetracyclic core, the Z group, the proline group, and the valine group of inhibitors. We guessed the mutants could change the electrostatic surfaces of the wild type active pocket. In addition, we used ECFP analyses to find important substructures and could intuitively understand the results from QSAR models.  相似文献   

12.
Three-dimensional quantitative structure-activity relationship (3D-QSAR) models for a series of thiazolone derivatives as novel inhibitors bound to the allosteric site of hepatitis C virus (HCV) NS5B polymerase were developed based on CoMFA and CoMSIA analyses. Two different conformations of the template molecule and the combinations of different CoMSIA field/fields were considered to build predictive CoMFA and CoMSIA models. The CoMFA and CoMSIA models with best predictive ability were obtained by the use of the template conformation from X-ray crystal structures. The best CoMFA and CoMSIA models gave q (2) values of 0.621 and 0.685, and r (2) values of 0.950 and 0.940, respectively for the 51 compounds in the training set. The predictive ability of the two models was also validated by using a test set of 16 compounds which gave r (pred) (2) values of 0.685 and 0.822, respectively. The information obtained from the CoMFA and CoMSIA 3D contour maps enables the interpretation of their structure-activity relationship and was also used to the design of several new inhibitors with improved activity.  相似文献   

13.
Structure-based 3D QSAR and design of novel acetylcholinesterase inhibitors   总被引:5,自引:0,他引:5  
The paper describes the construction, validation and application of a structure-based 3D QSAR model of novel acetylcholinesterase (AChE) inhibitors. Initial use was made of four X-ray structures of AChE complexed with small, non-specific inhibitors to create a model of the binding of recently developed aminopyridazine derivatives. Combined automated and manual docking methods were applied to dock the co-crystallized inhibitors into the binding pocket. Validation of the modelling process was achieved by comparing the predicted enzyme-bound conformation with the known conformation in the X-ray structure. The successful prediction of the binding conformation of the known inhibitors gave confidence that we could use our model to evaluate the binding conformation of the aminopyridazine compounds. The alignment of 42 aminopyridazine compounds derived by the docking procedure was taken as the basis for a 3D QSAR analysis applying the GRID/GOLPE method. A model of high quality was obtained using the GRID water probe, as confirmed by the cross-validation method (q2 LOO=0.937, q2 L50% O=0.910). The validated model, together with the information obtained from the calculated AChE-inhibitor complexes, were considered for the design of novel compounds. Seven designed inhibitors which were synthesized and tested were shown to be highly active. After performing our modelling study the X-ray structure of AChE complexed with donepezil, an inhibitor structurally related to the developed aminopyirdazines, has been made available. The good agreement found between the predicted binding conformation of the aminopyridazines and the one observed for donepezil in the crystal structure further supports our developed model.  相似文献   

14.
15.
The ecdysteroid agonist activity of 71 HPLC-purified ecdysteroids was measured in the Drosophila melanogaster BII tumorous blood cell line assay. The resultant log(ED50) values, spanning almost 6 orders of magnitude, were used to construct a comparative molecular field analysis (CoMFA) model in which conformations were selected by homology to the crystal structure of ecdysone. Model A was constructed by utilization of the region- focused electrostatic indicator field (q2=0.631, r2=0.903, 5 components, 4 outliers). Model B made use of region-focused electrostatic and steric indicator fields along with MlogP (q2=0.694, r2=0.892, 5 components, 4 outliers). The model and its underlying bioassay data support a pharmacophore hypothesis in which ecdysteroid binding is understood to be due principally to the summation of localized interactions from approximately six specific loci. This is in contrast to previous structure-activity relationship hypotheses which are formulated in terms of the presence or absence of essential functional groups, without which ecdysteroid receptor affinity would be completely absent. The present CoMFA model is utilized to predict the activities of heretofore unknown ecdysteroids.  相似文献   

16.
Summary An example of a CoMFA study is described with the aim to discuss one of the major problems of this 3D QSAR method: lack of variable selection. It is shown that the use of nonrelevant energy parameters might produce CoMFA contour maps which poorly reflect the actual nature of the binding site and are in part statistical artefacts. The data set employed in our analysis comparises triazine inhibitors of dihydrofolate reductase (DHFR), isolated from chicken liver, which have already been the object of a QSAR study by other authors. Since three-dimensional structures of triazine-DHFR complexes are known, it was possible not only to reduce ambiguities in the superimposition of the ligands, but also to compare the resulting CoMFA contour maps with the enzyme active site.Supplementary material available: The Cartesian coordinates and the atomic charges of the PM3-optimized structures used in the CoMFA study are available as MOL2 files upon request.To whose memory this paper is dedicated.  相似文献   

17.
Checkpoint kinase 1 (Chk1) is a promising target for the design of novel anticancer agents. In the present work, molecular docking simulations and three-dimensional quantitative structure–activity relationship (3D-QSAR) studies were performed on pyridyl aminothiazole derivatives as Chk1 inhibitors. AutoDock was used to determine the probable binding conformations of all the compounds inside the active site of Chk1. Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) models were developed based on the docking conformations and alignments. The CoMFA model produced statistically significant results with a cross-validated correlation coefficient (q2) of 0.608 and a coefficient of determination (r2) of 0.972. The reliable CoMSIA model with q2 of 0.662 and r2 of 0.970 was obtained from the combination of steric, electrostatic and hydrogen bond acceptor fields. The predictive power of the models were assessed using an external test set of 14 compounds and showed reasonable external predictabilities (r2pred) of 0.668 and 0.641 for CoMFA and CoMSIA models, respectively. The models were further evaluated by leave-ten-out cross-validation, bootstrapping and progressive scrambling analyses. The study provides valuable information about the key structural elements that are required in the rational design of potential drug candidates of this class of Chk1 inhibitors.  相似文献   

18.
朱丽荔  徐筱杰 《物理化学学报》2002,18(12):1087-1092
采用两种分子场分析方法即比较分子场分析法(CoMFA)和比较分子相似因子分析法(CoMSIA)进行了37个褪黑激素受体拮抗剂的构效关系研究.计算结果表明,两种方法得到的构效关系模型都具有较好的预测能力.在计算中,还考察了不同格点距离和电荷计算方法对构效关系模型的影响.通过分析分子场等值面图在空间的分布,可以观察到叠合分子周围分子场特征对化合物活性的影响,为设计新的褪黑激素拮抗剂提供了一些理论依据.  相似文献   

19.
    
Molecular modelling studies [comparative molecular field analysis (CoMFA), comparative molecular similarity indices analysis (CoMSIA), topomer CoMFA and hologram quantitative structure–activity relationship (HQSAR)] have been performed on the series of 28 molecules belonging to the series of aromatic acid ester derivatives for their carbonic anhydrase inhibitory activity. The model exhibited good correlation coefficient (r2) and cross‐validated correlation coefficient (q2) for CoMFA, CoMSIA and HQSAR methods. On the basis of the findings from all these studies, a structure–activity relationship was established. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
    
A 3D‐QSAR study of celebrex‐based compounds of PDK1 inhibitors using comparative molecular field analysis (CoMFA) was carried out. The structures of the compounds were obtained using quantum chemistry calculation. CoMFA calculations for a number of grouped subsets of compounds gave q2 values of correlation in the range from 0 to 0.8. The low q2 values should be mainly due to the narrow span of biological activity. Calculations for several subsets of 11–13 compounds gave high q2 values, with 0.5–0.8. Factors affecting the results of the calculations are discussed. Calculated results with high q2 values suggest that further chemical modifications of the compounds could lead to enhanced activity and could be an aid in the design of celebrex‐based cancer drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号