首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Experimental measurements of flow patterns. pressure gradients and liquid holdup for intermittent two-phase flow in upward inclined pipes are reported. Comparison of this new experimental evidence is made with the Taitel & Dukler theory and the intermittent flow model as modified by Nicholsonet al.  相似文献   

2.
In this work, co-current flow characteristics of air/non-Newtonian liquid systems in inclined smooth pipes are studied experimentally and theoretically using transparent tubes of 20, 40 and 60 mm in diameter. Each tube includes two 10 m long pipe branches connected by a U-bend that is capable of being inclined to any angle, from a completely horizontal to a fully vertical position. The flow rate of each phase is varied over a wide range. The studied flow phenomena are bubbly flow, stratified flow, plug flow, slug flow, churn flow and annular flow. These are observed and recorded by a high-speed camera over a wide range of operating conditions. The effects of the liquid phase properties, the inclination angle and the pipe diameter on two-phase flow characteristics are systematically studied. The Heywood–Charles model for horizontal flow was modified to accommodate stratified flow in inclined pipes, taking into account the average void fraction and pressure drop of the mixture flow of a gas/non-Newtonian liquid. The pressure drop gradient model of Taitel and Barnea for a gas/Newtonian liquid slug flow was extended to include liquids possessing shear-thinning flow behaviour in inclined pipes. The comparison of the predicted values with the experimental data shows that the models presented here provide a reasonable estimate of the average void fraction and the corresponding pressure drop for the mixture flow of a gas/non-Newtonian liquid.  相似文献   

3.
In this work, the ability of artificial neural networks (ANNs) to predict void fraction of gas–liquid two–phase flow in horizontal and inclined pipes was investigated. For this purpose, an ANN model was designed and trained using a total of 301 experimental data points reported in the literature for inclination angles between –20° and +20°. Pipe inclination angle as well as superficial Reynolds number of gas (Resg) and liquid (Resl) were chosen as input parameters of different structures of multilayer perceptron (MLP) neural networks, while the corresponding void fraction was selected as their output parameter. A hyperbolic tangent sigmoid and a linear function were employed as transfer functions of hidden and output layers, respectively, and Levenberg–Marquardt back propagation algorithm was used to train the networks. By trial–and–error method, a three–layer network with 10 neurons in the hidden layer was achieved as optimal structure of the ANN which made it possible to predict the void fraction with a high accuracy. Mean absolute percent error (MAPE) of 1.81% and coefficient of determination (R2) of 0.9976 for training data and MAPE of 1.52% and R2 value of 0.9948 for testing data were obtained. Also for all data, MAPE of 1.95% and R2 value of 0.9972 were calculated, and 96% data were within ±5% error band. In addition, the accuracy of the proposed ANN model was compared with the predictions from 17 void fraction correlations available in the literature for different flow patterns and horizontal and inclined flows. For all cases, the proposed ANN model gave better performance than all of the studied correlations. The results confirm the very good capability of the ANNs to predict the void fractions of gas–liquid flow in inclined pipes, regardless of flow pattern. Finally, by performing interpolation using the trained network, the void fraction values for some other conditions were predicted.  相似文献   

4.
New models are suggested for the transition from annular to intermittent flow and from dispersed bubble flow for two-phase gas-liquid flow in inclined pipes. The models display a smooth change in mechanisms as the pipe inclination varies over the whole range of upward and downward inclinations. The results of the models compare favorably with experimental data.  相似文献   

5.
6.
Gamma densitometry is a frequently used non-intrusive method for measuring component volume fractions in multiphase flow systems. The application of a single-beam gamma densitometer to investigate oil–water flow in horizontal and slightly inclined pipes is presented. The experiments are performed in a 15 m long, 56 mm diameter, inclinable stainless steel pipe using Exxsol D60 oil (viscosity 1.64 mPa s, density 790 kg/m3) and water (viscosity 1.0 mPa s, density 996 kg/m3) as test fluids. The test pipe inclination is changed in the range from 5° upward to 5° downward. Experimental measurements are reported at three different mixture velocities, 0.25, 0.50 and 1.00 m/s, and the inlet water cut is varied from 0 to 1. The gamma densitometer is composed of radioactive isotope of Am-241 with the emission energy of 59.5 keV, scintillation detector [NaI(Tl)] and signal processing system. The time averaged cross-sectional distributions of oil and water phases are measured by traversing the gamma densitometer along the vertical pipe diameter. Based on water volume fraction measurements, water hold-up and slip ratio are estimated. The total pressure drop over the test section is measured and frictional pressure drop is estimated based on water hold-up measurements. The measurement uncertainties associated with gamma densitometry are also discussed. The measured water hold-up and slip ratio profiles are strongly dependent on pipe inclination. In general, higher water hold-up values are observed in upwardly inclined pipes compared to the horizontal and downwardly inclined pipes. At low mixture velocities, the slip ratio decreases as the water cut increases. The decrease is more significant as the degree of inclination increases. The frictional pressure drop for upward flow is slightly higher than the horizontal flow. In general, there is a marginal difference in frictional pressure drop values for horizontal and downwardly inclined flows.  相似文献   

7.
 A one-dimensional model is presented, which describes the transient two-phase flow in thin pipes during fast pressure drops and degassing by use of Eulerian and Lagrangian systems. The reduction in dimension is obtained by introduction of a geometry model for bubbly and slug flow regimes. The complete model includes the transient two-phase flow, bubble formation and bubble growth. The flow model predicts rising velocities of bubbles and plugs in arbitrary inclined highly accurate pipes. The mass transfer (diffusion) of the dissolved phase is calculated by the bubble growth model. The quality of the model was examined by simulation of experimental series, whereby water was depressurised from the saturation pressure of the dissolved gas mixture (air), by variation of saturation pressure, pressure gradient and pipe geometry. The results of numerical simulation fit the experimental data well. Received on 17 January 2000  相似文献   

8.
A new model is developed to predict flow behaviors including flow pattern, pressure gradient and holdup for oil–water flow in horizontal and slightly inclined pipes. The model is based on the universal principle that a system stabilizes to its minimum total energy. The structural configurations observed in two-phase flow systems can be interpreted in terms of total energy minimization. Performance of the developed model is tested against several experimental data, and comparisons with existing models are presented. It is evident from the results and comparisons that the model estimates the pressure gradient and flow pattern very well. The model provides extensive information about oil–water flow characteristics.  相似文献   

9.
In this paper, we study both the static and dynamic instabilities of submerged and inclined concentric pipes conveying fluid. The governing equation for the inner tubular beam is derived under small deformation assumptions. We obtain the discretized dynamical equations using spatial finite-difference schemes. In the case of steady flow, both buckling and flutter instabilities are investigated. In the case of pulsatile flow, we compute the eigenvalues of the monodromy matrix derived from the discretized linear system with periodic coefficients, and deduce the dynamical stability information. In addition, for a special case, in which the concentric pipes have the same length, we compare the dynamic stability results with the corresponding solutions obtained with the Bolotin method.  相似文献   

10.
In chemical and oil industry gas/shear-thinning liquid two-phase flows are frequently encountered. In this work, we investigate experimentally the flow characteristics of air/shear-thinning liquid systems in horizontal and slightly inclined smooth pipes. The experiments are performed in a 9-m-long glass pipe using air and three different carboxymethyl cellulose (CMC) solutions as test fluids. Flow pattern maps are built by visual observation using a high-speed camera. The observed flow patterns are stratified, plug, and slug flow. The effects of the pipe inclination and the rheology of the shear-thinning fluid in terms of flow pattern maps are presented. The predicted existence region of the stratified flow regime is compared with the experimental observation showing a good agreement. A mechanistic model valid for air/power-law slug flow is proposed and model predictions are compared to the experimental data showing a good agreement. Slug flow characteristics are investigated by the analysis of the signals of a capacitance probe: slug velocity, slug frequency, and slug lengths are measured. A new correlation for the slug frequency is proposed and the results are promising.  相似文献   

11.
An exact solution for laminar two-phase eccentric core-annular flows (CAF) in inclined pipes is derived. This solution complements the exact solutions that were obtained for inclined stratified flows with curved interfaces as to provide a set of solutions for two-phase laminar separated flows. A unified set of three dimensionless parameters for separated flows is defined and used to explore the effects of the system parameters and separated flow configurations on the velocity profiles and the resulting holdup, pressure gradient and pumping power requirement in horizontal and inclined concurrent and countercurrent flows. It is shown that similarly to stratified flows, also in CAF multiple solutions for the holdup and the associated flow characteristics can be obtained in inclined flows. The boundaries of the multiple solution regions are mapped and the effect of the core eccentricity and system parameters boundaries are demonstrated and discussed.The benefits of adding a lubricating phase for transportation of a viscous fluid in inclined CAFs is investigated. An adverse effect of the upward pipe inclination on the power savings in all of the separate flow configurations is demonstrated. Independently of the density of the lubricant, namely, whether it is lighter or heavier than the viscous fluid, the effect of hydrostatic pressure gradient always hinders the possibility of reducing the pumping requirement for transporting the viscous phase. However, surprisingly, a heavier lubricant is preferable form the view point of power saving. The implications of turbulent flow of the lubricating phase and the susceptibility to Ledinegg instability on the potential power savings are also considered and discussed. The application of the model for the analysis of experimental data of the holdup and pressure drop obtained in horizontal and inclined CAF is also demonstrated.  相似文献   

12.
Bends are widely used in pipelines carrying single-and two-phase fluids in both ground and space applications. In particular, they play more important role in space applications due to the extreme spatial constraints. In the present study, a set of experimental data of two-phase flow patterns and their transitions in a 90° bend with inner diameter of 12.7 mm and curvature radius of 76.5 mm at microgravity conditions are reported. Gas and liquid superficial velocities are found to range from (1.0≈23.6) m/s for gas and (0.09≈0.5) m/s for liquid, respectively. Three major flow patterns, namely slug, slug-annular transitional, and annular flows, are observed in this study. Focusing on the differences between flow patterns in bends and their counterparts in straight pipes, detailed analyses of their characteristics are made. The transitions between adjoining flow patterns are found to be more or less the same as those in straight pipes, and can be predicted using Weber number models satisfactorily. The reasons for such agreement are carefully examined. The project supported by the Canadian Space Agency (CSA) and the visiting scholar program of the Chinese Academy of Sciences (CAS)  相似文献   

13.
This paper presents results from seven experimental facilities on the co-current flow of air and water in downward sloping pipes. As a function of the air flow rate, pipe diameter and pipe slope, the required water discharge to prevent air accumulation was determined. In case the water discharge was less than the required water discharge, the air accumulation and additional gas pocket head loss were measured. Results show that volumetric air discharge as small as 0.1% of the water discharge accumulate in a downward sloping section. The experimental data cover all four flow regimes of water-driven air transport: stratified, blow-back, plug and dispersed bubble flow. The analysis of the experimental results shows that different dimensionless numbers characterise certain flow regimes. The pipe Froude number determines the transition from blow-back to plug flow. The gas pocket head loss in the blow-back flow regime follows a pipe Weber number scaling. A numerical model for the prediction of the air discharge as a function of the relevant system parameters is proposed. The novelty of this paper is the presentation of experimental data and a numerical model that cover all flow regimes on air transport by flowing water in downward inclined pipes.  相似文献   

14.
Flexible risers transporting hydrocarbon liquid–gas flows may be subject to internal dynamic fluctuations of multiphase densities, velocities and pressure changes. Previous studies have mostly focused on single-phase flows in oscillating pipes or multiphase flows in static pipes whereas understanding of multiphase flow effects on oscillating pipes with variable curvatures is still lacking. The present study aims to numerically investigate fundamental planar dynamics of a long flexible catenary riser carrying slug liquid–gas flows and to analyse the mechanical effects of slug flow characteristics including the slug unit length, translational velocity and fluctuation frequencies leading to resonances. A two-dimensional continuum model, describing the coupled horizontal and vertical motions of an inclined flexible/extensible curved riser subject to the space–time varying fluid weights, flow centrifugal momenta and Coriolis effects, is presented. Steady slug flows are considered and modelled by accounting for the mass–momentum balances of liquid–gas phases within an idealized slug unit cell comprising the slug liquid (containing small gas bubbles) and elongated gas bubble (interfacing with the liquid film) parts. A nonlinear hydrodynamic film profile is described, depending on the pipe diameter, inclination, liquid–gas phase properties, superficial velocities and empirical correlations. These enable the approximation of phase fractions, local velocities and pressure variations which are employed as the time-varying, distributed parameters leading to the slug flow-induced vibration (SIV) of catenary riser. Several key SIV features are numerically investigated, highlighting the slug flow-induced transient drifts due to the travelling masses, amplified mean displacements due to the combined slug weights and flow momenta, extensibility or tension changes due to a reconfiguration of pipe equilibrium, oscillation amplitudes and resonant frequencies. Single- and multi-modal patterns of riser dynamic profiles are determined, enabling the evaluation of associated bending/axial stresses. Parametric studies reveal the individual effect of the slug unit length and the translational velocity on SIV response regardless of the slug characteristic frequency being a function of these two parameters. This key observation is practically useful for the identification of critical maximum response.  相似文献   

15.
To promote a better understanding of liquid–liquid two-phase flow behavior, particularly under high pressure, flow patterns of n-hexadecane–CO2 liquid–liquid two-phase upward flow in vertical stainless steel pipes were experimentally investigated. Observations were made in two 0.0015 m I.D. pipes of different lengths (0.068 m and 0.5 m) under high pressure varying from 10.3 to 29.6 MPa using a high pressure visualization system. The total flow rate was fixed at 2.0 × 10−6 m3/min, while the flow rate ratio (φ) varied from 0.05 to 19. Bubbly flow, plug flow, slug flow, annular flow, and near-one-phase flow regions were found in both pipes, while stratified flow was observed only in the 0.068 m pipe. Flow pattern maps were constructed in the flow rate ratio versus pressure graph, which demonstrates significant impacts of flow rate ratio, pipe length, and pressure on flow patterns. These impacts are discussed in detail. To the authors’ best knowledge, this work is the first attempt to observe complex liquid–liquid two-phase flow behavior with flow pattern transitions under high pressure, and contributes to a better understanding of liquid–liquid two-phase flow behavior.  相似文献   

16.
Tilting influences the flow patterns and thus the heat transfer and pressure drop during condensation in smooth tubes. However, few studies are available on diabatic two-phase flows in inclined tubes. The purpose of the present paper is to review two-phase flow in inclined tubes, with specific reference to condensation. Firstly, the paper reviews convective condensation in horizontal tubes. Secondly, an overview is given of two-phase flow in inclined tubes. Thirdly, a review is conducted on condensation in inclined tubes. It is shown for convective condensation in inclined tubes that the inclination angle influences the heat transfer coefficient. The heat transfer coefficient can be increased or decreased depending on the experimental conditions, and especially the flow pattern. Under certain conditions, an inclination angle may exist, which leads to an optimum heat transfer coefficient. Furthermore, this paper highlights the lack of experimental studies for the prediction of the inclination angle effect on the flow pattern, the heat transfer coefficient and the pressure drop in two-phase flows during phase change.  相似文献   

17.
Gas–liquid slug flow occurs over a wide range of phase flow rates and in a variety of practical applications during gas–liquid two-phase flows. The range of slug flow increases further in narrow pipes (<0.0254 m), undulated pipelines, riser tube, etc. On the other hand, the past literature shows that slug flow is rarely observed for liquid–liquid cases. In the present study, an interest was felt to investigate whether liquid–liquid slug flow occurs in situations known for excessive slugging in gas–liquid cases. For this, experiments have been performed in narrow (0.012 m ID) vertical and horizontal pipes and an undulated pipeline of 0.0254 m internal diameter where the V-shaped undulation comprises of an uphill and a downhill section between two horizontal pipes. The studies have been performed for both peak and valley orientation of the undulation. Kerosene and water have been selected as the test fluids and the optical probe technique has been used to supplement visual observations especially at higher flow rates. The studies have revealed the existence of the slug flow pattern over a wide range of phase flow rates in all the three geometries. Interestingly, it has been noted that the introduction of an undulation induces flow patterns which bear a closer resemblance to gas–liquid flows as compared to liquid–liquid flows through a horizontal pipe of 0.0254 m diameter.  相似文献   

18.
Flow rate distribution and pressure drop of an evaporating fluid in small diameter parallel pipes were investigated at steady state and transient conditions.New quantitative experimental results on the transient response of the system to various changes in the inlet flow rate and the heating input are presented. The experimental results are compared with a time dependent model based on the temporal/local flow patterns in the parallel pipes. The experimental results compare fairly well to the theoretical ones.  相似文献   

19.
Three-dimensional laser Doppler anemometry measurements are performed on developed laminar flow in three helical pipes. The experimental observations are compared to results of numerical calculations employing the fully elliptic numerical method. Good agreement is found between measured data and numerical results. The three helical pipes, with curvature ratios of 0.0734 and 0.1374 and non-dimensional pitches of 0.0793 and 0.193, are adopted to study the effects of curvature and pitch on laminar flow in the experimental approach. The range of Reynolds numbers is 500–2000 to ensure laminar flow in the entire helical pipe. Both the profile shapes of the normal components of the secondary flow and those of the axial flow along the same centerline present not only similar patterns but also similar change when pitch, curvature ratio, and Reynolds number vary. The results demonstrate comprehensive relationships between the axial flow and the secondary flow.  相似文献   

20.
In this paper, we formulate a mathematical model to study the dynamics of submerged and inclined concentric pipes with different lengths. The governing equations of motion for the inner pipe are derived under small deformation assumptions and with the consideration of gravitational forces, turbulent boundary layer thickness of external flow, fluid frictional forces, and inertia effects. We obtain discretized dynamical equations using spatial finite-difference schemes and calculate the resonant frequencies of a particular pipe system design. In addition, by varying the operating conditions, we identify a few critical parameters pertaining to the proper design of such pipe systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号