首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
该文基于酶辅助靶标循环信号放大策略构建了用于黄曲霉毒素B1(AFB1)高灵敏检测的化学发光适体传感器。以G-四链体/氯化血红素DNA酶为信号分子设计了免标记的适体探针H1-S1和发夹探针H2。适体探针结合目标AFB1,在核酸外切酶I辅助下,触发靶标循环反应产生发夹H1。发夹H1与H2杂交,释放出完整的G-四链体序列,并进一步与氯化血红素结合形成G-四链体/氯化血红素DNA酶。DNA酶通过催化氧化鲁米诺-H2O2化学发光体系产生化学发光信号,实现AFB1的放大检测。在最优实验条件下,化学发光强度与AFB1质量浓度的对数在0.001~100 ng/mL范围内呈良好的线性关系,相关系数(r2)为0.9955,检出限为0.93 pg/mL,回收率为93.7%~107%。该适体传感器操作简单、灵敏度高、特异性好,在黄曲霉毒素污染检测方面具有良好的应用前景。  相似文献   

2.
Dye-loaded UiO-66 metal–organic framework nanoparticles (NMOFs) modified with catalytic hemin/G-quadruplex DNAzyme labels act as functional hybrid modules for the chemiluminescence resonance energy transfer (CRET) analysis of miRNAs (miRNA-155 or miRNA-21) or genes (p53 or BRCA1). The dye-loaded NMOFs (dye = fluorescein (Fl) or rhodamine 6G (Rh 6G)) are modified with hairpin probes that are engineered to include in their loop domains recognition sequences for the miRNAs or genes, and in their stem regions caged G-quadruplex domains. In the presence of the analytes miRNAs or genes, the hairpin structures are opened, leading, in the presence of hemin, to the self-assembly of hemin/G-quadruplex DNAzyme labels linked to the dye-loaded NMOFs. In the presence of luminol and H2O2, the hemin/G-quadruplex DNAzyme labels catalyze the generation of chemiluminescence that provides radiative energy to stimulate the process of CRET to the dye loaded in the NMOFs, resulting in the luminescence of the loaded dye without external excitation. The resulting CRET signals relate to the concentrations of the miRNAs or the genes and allow the sensitive analysis of miRNAs and genes. In addition, the DNA hairpin-functionalized dye-loaded NMOF sensing modules were further applied to develop amplified miRNA or gene CRET-based sensing platforms. The dye-loaded NMOFs were modified with hairpin probes that include in their loop domain the recognition sequences for miRNA-155 or miRNA-21 or the recognition sequences for the p53 or BRCA1 genes. Subjecting the hairpin-modified NMOFs to the respective miRNAs or genes, in the presence of two hairpins Hi and Hj that include in their stem regions caged G-quadruplex subunit domains, results in the analyte-triggered opening of the probe hairpin linked to the NMOFs, and the opened hairpin tethers induce the cross-opening of the hairpins Hi and Hj by the hybridization chain reaction, HCR, resulting in the assembly of G-quadruplex wires tethered to the NMOFs. The binding of hemin to the HCR-generated chains yields hemin/G-quadruplex DNAzyme wires that enhance, in the presence of luminol/H2O2, the CRET processes in the hybrid nanostructures. These amplification platforms lead to the amplified sensing of miRNAs and genes. By mixing the Fl- and Rh 6G-loaded hairpin-functionalized UiO NMOFs, the multiplexed CRET detection of miRNA-155, miRNA-21 and the p53 and BRCA1 genes is demonstrated.

Hemin/G-quadruplex DNAzyme-modified metal–organic framework nanoparticles act as functional hybrids for the catalyzed oxidation of luminol by H2O2, causing chemiluminescence and activation of chemiluminescence resonance energy transfer to the dye loads.  相似文献   

3.
Simian virus 40(SV40) is a polyomavirus and can induce a series of different tumors. The recognition of SV40 genome is crucial to tumor diagnosis and gene therapy. Herein, a sensitive and selective colorimetric method for sequence-specific recognition of homopyrimidine·homopurine duplex DNA(dsDNA) of SV40(4424—4440, gp6) was established with a hairpin probe based upon the formation of triplex DNA. Hairpin probe 5'-CCC TAC CCA TTT TTT CTT CTC TTT CCT GGG TAG GGC GGG TTG GG-3'(HP) containing G-rich sequence and 17-bp triplex-forming sequence was used as the signal probe, which was stem-loop structure alone and exhibited low catalytic activity. Upon its binding to the target duplex of SV40, hairpin probe transferred from stem-loop structure to parallel triplex DNA, accompanied by the recovery of catalytic activity of DNAzyme and a sharp increase of absorbance. Under optimum conditions, the absorbance was increased proportionally to the concentration of dsDNA over the range from 500 pmol/L to 40.0 nmol/L with a detection limit of 433 pmol/L. Moreover, satisfied results were obtained when the assay was used to recognize the mismatched sequences.  相似文献   

4.
Nucleic acid subunits consisting of fragments of the horseradish peroxidase (HRP)-mimicking DNAzyme and aptamer domains against ATP or sequences recognizing Hg(2+) ions self-assemble, in the presence of ATP or Hg(2+), into the active hemin-G-quadruplex DNAzyme structure. The DNAzyme-generated chemiluminescence provides the optical readout for the sensing events. In addition, the DNAzyme-stimulated chemiluminescence resonance energy transfer (CRET) to CdSe/ZnS quantum dots (QDs) is implemented to develop aptamer or DNA sensing platforms. The self-assembly of the ATP-aptamer subunits/hemin-G-quadruplex DNAzyme, where one of the aptamer subunits is functionalized with CdSe/ZnS QDs, leads to the CRET signal. Also, the functionalization of QDs with a hairpin nucleic acid that includes the G-quadruplex sequence in a 'caged' configuration is used to analyze DNA. The opening of the hairpin structure by the target DNA assembles the hemin-G-quadruplex DNAzyme that stimulates the CRET signal. By the application of three different sized QDs functionalized with different hairpins, the multiplexed analysis of three different DNA targets is demonstrated by the generation of three different CRET luminescence signals.  相似文献   

5.
A systematic study of the amplified optical detection of DNA by Mg(2+)-dependent DNAzyme subunits is described. The use of two DNAzyme subunits and the respective fluorophore/quencher-modified substrate allows the detection of the target DNA with a sensitivity corresponding to 1 × 10(-9) M. The use of two functional hairpin structures that include the DNAzyme subunits in a caged, inactive configuration leads, in the presence of the target DNA, to the opening of one of the hairpins and to the activation of an autonomous cross-opening process of the two hairpins, which affords polymer DNA wires consisting of the Mg(2+)-dependent DNAzyme subunits. This amplification paradigm leads to the analysis of the target DNA with a sensitivity corresponding to 1 × 10(-14) M. The amplification mixture composed of the two hairpins can be implemented as a versatile sensing platform for analyzing any gene in the presence of the appropriate hairpin probe. This is exemplified with the detection of the BRCA1 oncogene.  相似文献   

6.
The binding of a series of PNA and DNA probes to a group of unusually stable DNA hairpins of the tetraloop motif has been observed using absorbance hypochromicity (ABS), circular dichroism (CD), and a colorimetric assay for PNA/DNA duplex detection. These results indicate that both stable PNA-DNA and DNA-DNA duplexes can be formed with these target hairpins, even when the melting temperatures for the resulting duplexes are up to 50 degrees C lower than that of the hairpin target. Both hairpin/single-stranded and hairpin/hairpin interactions are considered in the scope of these studies. Secondary structures in both target and probe molecules are shown to depress the melting temperatures and free energies of the probe-target duplexes. Kinetic analysis of hybridization yields reaction rates that are up to 160-fold slower than hybridization between two unstructured strands. The thermodynamic and kinetic obstacles to hybridization imposed by both target and probe secondary structure are significant concerns for the continued development of antisense agents and especially diagnostic probes.  相似文献   

7.
A label-free and sensitive electrochemical biosensing strategy for a hepatocellular carcinoma biomarker of miRNA-122 has been proposed based on hybridization induced ion-barrier effect on the electroactive sensing interface.First,a bifunctional electroactive electrode with the nanocomposite of Prussian blue(PB) and gold nanoparticles(AuNPs) was prepared through a two-step electrodeposition process.The PB endows the electrode excellent K~+-dependent voltammetric signal and the AuNPs act as the matrix for the self-assembly immobilization of the thiolated probe DNA.Upon specific hybridization of probe DNA with the target miRNA-122,the formed double duplex induced the ion-barrier effect,which blocked the diffusion of the K~+ from the bulk solution to the electrode surface.As a result,the voltammetric signal of the PB on the electrode was surpressed,and thus the target miRNA-122 was monitored.The sensing assay showed that the miRNA-122 could be analyzed in the concentration range from 0.1 fmol/L to 1.0 nmol/L,with a detection limit of 0.021 fmol/L.The practical applicability of the biosensor was also verified by the spiking serum assay.  相似文献   

8.
Gene silencing was examined by sequence-specific alkylation of DNA by N-methylpyrrole (Py)-N-methylimidazole (Im) hairpin polyamides. Polyamides ImImPyPygammaImImPyLDu86 (A) and ImImPyPygammaImPyPyLDu86 (B) selectively alkylated the coding regions of the renilla and firefly luciferases, respectively, according to the base pair recognition rule of Py-Im polyamides. Two different plasmids, encoding renilla luciferase and firefly luciferase, were used as vectors to examine the effect of alkylation on gene silencing. Transfection of the alkylated luciferase vectors-by polyamide A or B-into HeLa, 293, and NIH3T3 cells demonstrated that these sequence-specific DNA alkylations lead to selective silencing of gene expression. Next, the vectors were cotransfected into HeLa cells and the cells were treated with polyamide A or B. Selective reduction of luciferase activities was caused by both polyamides. On the basis of this sequence-specific alkylation and gene silencing activity, these alkylating Py-Im polyamides thus have potential as antitumor drugs to target specific gene expression in human cells.  相似文献   

9.
Herein, we combine the advantage of aptamer technique with the amplifying effect of an enzyme-free signal-amplification and Au nanoparticles (NPs) to design a sensitive surface plasmon resonance (SPR) aptasensor for detecting small molecules. This detection system consists of aptamer, detection probe (c-DNA1) partially hybridizing to the aptamer strand, Au NPs-linked hairpin DNA (Au-H-DNA1), and thiolated hairpin DNA (H-DNA2) previously immobilized on SPR gold chip. In the absence of target, the H-DNA1 possessing hairpin structure cannot hybridize with H-DNA2 and thereby Au NPs will not be captured on the SPR gold chip surface. Upon addition of target, the detection probe c-DNA1 is forced to dissociate from the c-DNA1/aptamer duplex by the specific recognition of the target to its aptamer. The released c-DNA1 hybridizes with Au-H-DNA1 and opens the hairpin structure, which accelerate the hybridization between Au-H-DNA1 and H-DNA2, leading to the displacement of the c-DNA1 through a branch migration process. The released c-DNA1 then hybridizes with another Au-H-DNA1 probe, and the cycle starts anew, resulting in the continuous immobilization of Au-H-DNA1 probes on the SPR chip, generating a significant change of SPR signal due to the electronic coupling interaction between the localized surface plasma of the Au NPs and the surface plasma wave. With the use of adenosine as a proof-of-principle analyte, this sensing platform can detect adenosine specifically with a detection limit as low as 0.21 pM, providing a simple, sensitive and selective protocol for small target molecules detection.  相似文献   

10.
A novel electrochemical biosensor is described for detection of breakpoint cluster region gene and a cellular abl (BCR/ABL) fusion gene in chronic myelogenous leukemia (CML) by using thiolated-hairpin locked nucleic acids (LNA) as the capture probe. The hairpin LNA probe was immobilized on the nanogold (NG)/poly-eriochrome black T (EBT) film-modified glassy carbon electrode (GCE). The immobilized LNA probe could selectively hybridize with its target DNA on LNA/NG/EBT/GCE surface. The immobilization and hybridization of the LNA probe were characterized with cyclic voltammetry and electrochemical impedance spectroscopy. The hybridization of the immobilized LNA probe with the target DNA was detected by differential pulse voltammetry with the electroactive methylene blue as an indicator. The results indicated this new method has excellent specificity for single-base mismatch and complementary after hybridization, and a high sensitivity. This novel electrochemical biosensor has been used for assay of PCR real sample with satisfactory result.  相似文献   

11.
基于催化发卡自组装反应(CHA)和电活性材料[Ru(NH3)6]Cl3,发展了一种“信号增强”型光电化学生物传感器,实现了核酸的灵敏检测. 首先,采用逐层离子吸附法(SILAR)将CdS 固定于TiO2/ITO 电极表面. 光电材料CdS 不仅能够将TiO2 的吸收范围从紫外光区拓展到可见光区,而且还能提高光电转换效率. 之后,通过Cd-S 键将捕获DNA(C-DNA)固定于CdS/ TiO2/ITO 电极表面. 与此同时,将Au 结合的发卡DNA 探针1(Au-HP1),发卡DNA 探针2(HP2)和目标DNA(T-DNA)混合物于溶液中进行CHA 反应,得到大量的Au-HP1:HP2 复合物. 再通过Au-HP1:HP2 复合物与C-DNA 的杂交反应将大量的双链DNA 引入到电极表面. 最后,将电活性物质Ru(NH3)63+嵌入DNA 的磷酸骨架中,从而使得光电流大幅度的增强. 该光电生物传感器检测核酸的线性范围为10 fmol·L-1 到 1500 fmol·L-1,检测线为6.19 fmol·L-1,在生物分析、新药筛选以及疾病的早期诊断等方面具有潜在的应用前景.  相似文献   

12.
Fei Y  Jin XY  Wu ZS  Zhang SB  Shen G  Yu RQ 《Analytica chimica acta》2011,691(1-2):95-102
In order to develop a highly sensitive and selective piezoelectric transducer for the detection of DNA, the bio-recognizing probe is for the first time designed by introducing a hairpin structure and a recognition site for EcoRI into an oligonucleotide sequence and signal amplifiers are prepared by modifying gold nanoparticles (GNPs) with biomolecules, deepening the application and understanding of biomaterials. The piezoelectric transducer is prepared by immobilizing designed hairpin recognition probe onto the quartz-crystal-microbalance (QCM). In the absence of target DNA, the hairpin probe is removed from the QCM surface after exposure to endonuclease, inhibiting the subsequent signaling reaction. In contrast, introduction of target DNA can open the hairpin probe due to the probe/target hybridization, dissociating the cleavable double-stranded portion. In this case, even if being treated with endonuclease, the integrated hairpin probe is maintained. Subsequent introduction of GNPs modified with detection probes that can hybridize to the terminal sequence of hairpin probe results in a many-folds increase of the frequency response. Utilizing the proposed transduction scheme, the reliable target DNA detection can be accomplished. The detection limit of 2 pM and dynamic response range for target DNA from 2 to 300 pM are obtained. Furthermore, single-base mismatched DNAs can be easily identified. The developed proof-of-principle of a novel piezoelectric transduction scheme is expected to establish a potential platform for the disease-associated mutation analysis and DNA hybridization detection in biotechnology and medical diagnostics.  相似文献   

13.
In this report, a simple electrochemical biosensor has been developed for highly sensitive and specific detection of DNA based on hairpin assembly amplification. In the presence of target DNA, the biotin‐labelled hairpin H1 is opened by hybridizing with target DNA through complementary sequences. Then the opened hairpin H1 assembles with the hairpin H2 to displace the target DNA, generating H1‐H2 complex. The displaced target DNA could trigger the next cycle of hairpins assembly, resulting in the generation of numerous H1‐H2 complexes. Subsequently, the H1‐H2 complex hybridizes with the capture probe immobilized on the electrode. Finally, the streptavidin alkaline phosphatase (ST‐ALP) binds to biotin in the capture probe‐H1‐H2 complex and catalyzes the substrate α‐naphthol (α‐NP) to produce electrochemical signal. To make a more fascinating hairpin assembly amplification strategy in signal amplification, mismatched base sequences are designed in hairpin H2 to decrease non‐specific binding of the hairpin substrates. The developed biosensor achieves a sensitivity of 20 pM with a linear range from 25 pM to 25 nM, and shows high selectivity toward single‐base mismatch. Thus, the proposed electrochemical biosensor might have the potential for early clinical diagnosis and therapy.  相似文献   

14.
An ultrasensitive electrochemiluminescence (ECL) method on the combination of electrochemical parallel catalytic reaction and chemiluminesence signal sensing was proposed for improving ECL analytical characteristics using vanadate(V) as a representative. Vanadate(V) could be electrochemically reduced to generate vanadate(II) which could be chemically oxidized by potassium periodate to regenerate vanadate(V) and give parallel catalytic wave effect. Then, the reduced product of potassium periodate could react with butyl‐rhodamine B to emit a sensitive chemiluminescence signal. The chemiluminescence intensity was correlative with vanadate(V) concentration. The investigation on the electrochemical reaction rate constant (k0) confirmed that the speed of electrochemical reaction was faster than that of the subsequent chemiluminescence reaction. The possibility of the combination of electrochemical parallel catalytic reaction with chemiluminescence signal sensing was proved. The similar ECL behaviors could be observed at zirconia nanowires‐Nafion modified electrode. Because of the separation and enrichment effect of the modified electrode on vanadate(V), the selectivity and sensitivity was further improved greatly. Based on these findings, a new concept on the combination of electrochemical parallel catalytic reaction and chemiluminesence signal sensing was proposed and an ultrasensitive ECL method for the determination of vanadate(V) was developed at zirconia nanowires‐Nafion modified electrode. Under the optimum experimental conditions, the ECL intensity was linear with the concentration of vanadate(V) in the range of 2.0×10?12 mol/L–2.0×10?10 mol/L. The detection limit was 8.0×10?13 mol/L, which was more than 6 orders of magnitude lower than that observed by electrochemical current transduction for electrochemical parallel catalytic reaction at zirconia nanowires‐Nafion modified electrode.  相似文献   

15.
Tris(2,4,6-trimethoxyphenyl)phosphonium propylamine bromide (TMPP) has been used for the derivatisation of maleic, fumaric, sorbic and salicylic acids to facilitate determination using liquid chromatography/electrospray ionisation tandem mass spectrometry (LC/ESI-MS/MS) in positive ion mode. Detection limits, achieved using multiple reaction monitoring mode, were 2, 4, 0.4 and 540 fmol (5 muL injection) for derivatised fumaric, sorbic, maleic and salicylic acids, respectively. In comparison, detection limits achieved in negative ion mode for the underivatised acids were 24, 51, 2, and 117 fmol, respectively. The method was successfully used for the determination of sorbic acid in a sample of Panadol. The derivatisation of salicylic acid was not as successful, probably due to poor reaction efficiency.  相似文献   

16.
A generic fluorescence sensing platform for analyzing DNA by the Zn(2+)-dependent ligation DNAzyme as amplifying biocatalyst is presented. The platform is based on the target DNA induced ligation of two substrate subunits and the subsequent opening of a beacon hairpin probe by the ligated product. The strand displacement of the ligated product by the beacon hairpin is, however, of limited efficiency. Two strategies are implemented to overcome this limitation. By one method, a "helper" nucleic acid sequence is introduced into the system, and this hybridizes with the DNAzyme components and releases the ligated product for opening of the hairpin. By the second method, a nicking enzyme (Nt.BspQI) is added to the system, and this nicks the duplex between the beacon and ligated product while recycling the free ligation product. By combining the two coadded components ("helper" sequence and nicking enzyme), the sensitive detection of the analyte is demonstrated (detection limit, 20 pM). The enzyme-free amplified fluorescence detection of the target DNA is further presented by the Zn(2+)-dependent ligation DNAzyme-driven activation of the Mg(2+)-dependent DNAzyme. According to this method, the Mg(2+)-dependent DNAzyme subunits displace the ligated product, and the resulting assembled DNAzyme cleaves a fluorophore/quencher-modified substrate to yield fluorescence. The method enabled the detection of the target DNA with a detection limit corresponding to 10 pM. The different sensing platforms are implemented to detect the Tay-Sachs genetic disorder mutant.  相似文献   

17.
Here, we combine T7 exonuclease (T7 Exo) signal amplification and polystyrene nanoparticle (PS NP) amplification to develop novel fluorescence polarization (FP) aptasensors. The binding of a target/open aptamer hairpin complex or a target/single‐stranded aptamer complex to dye‐labeled DNA bound to PS NPs, or the self‐assembly of two aptamer subunits (one of them labeled with a dye) into a target/aptamer complex on PS NPs leads to the cyclic T7 Exo‐catalyzed digestion of the dye‐labeled DNA or the dye‐labeled aptamer subunit. This results in a substantial decrease in the FP value for the amplified sensing process. Our newly developed aptasensors exhibit a sensitivity five orders of magnitude higher than that of traditional homogeneous aptasensors and a high specificity for the target molecules. These distinct advantages of our proposed assay protocol make it a generic platform for the design of amplified aptasensors for ultrasensitive detection of various target molecules.  相似文献   

18.
发光标记分析及其在核酸检测中的应用   总被引:11,自引:0,他引:11  
陈扬  陆祖宏 《化学通报》2001,64(9):537-546
综述了化学发光,生物发光,电致化学发光中最重要的发光体系,增强鲁米诺体系,吖啶酯发光体系,碱性磷酸酶/1,2-二氧环乙烷体系,荧火虫荧光素/荧光素酶及联吡啶钌发光体系的原理,标记检测方法,最近的进展及在核酸领域的应用,对近年来新发展的发光标记方法作了介绍并分析了该领域今后可能的研究方向。  相似文献   

19.
A novel electrochemical method for the sequence-specific detection of double-stranded polymerase chain reaction (PCR) products of PML/RARα fusion gene in acute promyelocytic leukemia (APL) was described in detail. Based on a “sandwich” sensing mode involving a pair of locked nucleic acids probes (capture probe and reporter probe), this DNA sensor exhibited excellent selectivity and specificity. The direct and quantitative analysis of double-stranded complementary was firstly performed by our sensor without the use of alkali, helicase enzymes, or denaturants. Finally, combining PCR technique with electrochemical detection scheme, PCR amplicons (191 bp) of the PML/RARα fusion gene were obtained and rapidly identified with a low detection limit of 79 fmol in the 100-μL hybridization system. The results clearly showed the power of sensor as a promising tool for the sensitive, specific, and portable detection of APL and other diseases.  相似文献   

20.
In this paper, we report a new signal amplification strategy for highly sensitive and enzyme-free method to assay proteins based on the target-driven self-assembly of stacking deoxyribonucleic acids (DNA) on an electrode surface. In the sensing procedure, binding of target protein with the aptamer probe is used as a starting point for a scheduled cycle of DNA hairpin assembly, which consists of hybridization, displacement and target regeneration. Following numbers of the assembly repeats, a great deal of DNA duplexes can accordingly be formed on the electrode surface, and then switch on a succeeding propagation of self-assembled DNA concatemers that provide further signal enhancement. In this way, each target binding event can bring out two cascaded DNA self-assembly processes, namely, stacking DNA self-assembly, and therefore can be converted into remarkably intensified electrochemical signals by associating with silver nanoparticle-based readout. Consequently, highly sensitive detection of target proteins can be achieved. Using interferon-gamma as a model, the assay method displays a linear range from 1 to 500 pM with a detection limit of 0.57 pM, which is comparable or even superior to other reported amplified assays. Moreover, the proposed method eliminates the involvement of any enzymes, thereby enhancing the feasibility in clinical diagnosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号