首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
基于位移型Gurtin变分原理计算动力响应的逐步积分法   总被引:8,自引:0,他引:8  
本文利用位移型Gurtin变分原理,在时间域上采用三次Hermite插值函数进行离散,给出了一种计算结构动力响应的逐步积分方法。通过稳定性分析研究了该方法的稳定区情况表明,当1.64≤θ≤2.08时,该方法的数值计算精度很高,但是条件稳定积分格式。当θ≥4.1时,该方法是无条件稳定的积分格式,精度较高。  相似文献   

3.
4.
Slope-Deflection Method for elastic rigid frames is generalized for elastic-plastic analysis of rigid frames of work-hardening materials. The plastic strain is here treated as an additional set of externally applied moments. The end moments of the component members of the frame are obtained from the solution of a set of linear algebraic equations. No iteration is required. Numerical results of the analysis of a portal frame and a two-story plane frame subject to side loads beyond the elastic range are shown.  相似文献   

5.
A model for unifying a viscoelastic fluid and a Newtonian fluid is established, in which the governing equations for the viscoelastic fluid and the Newtonian fluid are successfully united into a system of generalized Navier–Stokes equations. A level set method is set up to solve the model for capturing the moving interface in the mold filling process. The physical governing equations are solved by the finite volume method on a non-staggered grid and the interpolation technique on the collocated grid is used for the pressure-velocity and the stress-velocity decoupling problems. The level set and its reinitialization equation are solved by the finite difference method, in which the spatial derivatives are discretized by the 5th-order Weighted Essentially Non-Oscillatory (WENO) scheme, and the temporal derivatives are discretized by the 3rd-order Total Variation Diminishing Runge–Kutta (TVD-R–K) scheme. The validity of the method is verified by some benchmark problems. Then a simulation of viscoelastic fluid mold filling process is pursued with the method. The moving interface and all the information of the physical quantities during the injection process are captured. The die swelling phenomenon is found in the simulation. The influences of elasticity and viscosity on the physical quantities such as stresses etc. in the mold filling process are analyzed. Numerical results show that elastic characteristics such as the stretch and die swelling etc. reinforce accordingly as Weissenberg number increases. Pressures increase continuously in the mold filling process and the pressure maintains the maximum value at the inlet. Injection velocity is proportional to injection pressure. A higher viscosity leads to a higher pressure distribution, that is, the pressure decreases as Reynolds number increases.  相似文献   

6.
7.
This paper gives the direct formulas of stiffness matrixes of two kinds of Kirchhoff nonlinear elements under total-Lagrange coordinate. For the first one, it includes not only the quadric terms of increments of strain and displacement but also the influence of rotations. For the second one, it is simplified and its nonlinear is considered by taking into account the influence of axial force on the equilibrium equation in the linear beam theory. The nonlinear equation obtained from both of the above-said elements is solved by mixed Newton-Raphson method, and by comparing the results obtained from two kinds of nonlinear beam some important conclusions that we can know how to use them right are given in our paper.  相似文献   

8.
A measurement technique of viscoelastic properties of polymers is proposed to investigate complex Poisson’s ratio as a function of frequency. The forced vibration responses for the samples under normal and shear deformation are measured with varying load masses. To obtain modulus of elasticity and shear modulus, the present method requires only knowledge of the load mass, geometrical characteristics of a sample, as well as both the amplitude ratio and phase lag of the forcing and response oscillations. The measured data were used to obtain the viscoelastic properties of the material based on a 2D numerical deformation model of the sample. The 2D model enabled us to exclude data correction by the empirical form factor used in 1D model. Standard composition (90% PDMS polymer + 10% catalyst) of silicone RTV rubber (Silastic® S2) were used for preparing three samples for axial stress deformation and three samples for shear deformation. Comprehensive measurements of modulus of elasticity, shear modulus, loss factor, and both real and imaginary parts of Poisson’s ratio were determined for frequencies from 50 to 320 Hz in the linear deformation regime (at relative deformations 10?6 to 10?4) at temperature 25 °C. In order to improve measurement accuracy, an extrapolation of the obtained results to zero load mass was suggested. For this purpose measurements with several masses need to be done. An empirical requirement for the sample height-to-radius ratio to be more than 4 was found for stress measurements. Different combinations of the samples with different sizes for the shear and stress measurements exhibited similar results. The proposed method allows one to measure imaginary part of the Poisson’s ratio, which appeared to be about 0.04–0.06 for the material of the present study.  相似文献   

9.
A procedure to identify the viscoelastic material parameters of a solid amorphous polymer and to estimate their values is presented. Stress–strain material data is obtained for the polymer by a compression experiment. The material behavior of the polymer is modeled according to the generalized Maxwell model, which is fitted to the experimental data by the method of least squares to obtain a first approximation for the model parameters. The identification of the model parameters is completed by a Markov chain Monte Carlo (MCMC) method, which generates the probability distributions of the relevant parameters of the material. The utilized MCMC method enables us to determine a suitable complexity (i.e., the number of Maxwell elements) for the generalized Maxwell model, so that the model best fits the data and, simultaneously, leads to an identifiable set of parameters. The numerical results imply that the uniqueness of the solution is lost when the number of model parameters becomes redundant.  相似文献   

10.
针对材料力学中常见的一种组合轴扭转角的求解问题,提出了一种方便、快捷的整体化解法,避免了将其视为静不定问题的传统求解方法的繁琐,文章最后讨论了该方法的可行性依据与适用范围.  相似文献   

11.
A hybrid method for computing the flow of viscoelastic and second-order fluids is presented. It combines the features of the finite difference technique and the shooting method. The method is accurate because it uses central differences. Its convergence is at least superlinear. The method is applied to obtain the solutions to three problems of flow of Walters' B' fluid: (a) flow near a stagnation point, (b) flow over a stretching sheet and (c) flow near a rotating disk. Numerical results reveal some new characteristics of flows which are not easy to demonstrate using the perturbation technique.  相似文献   

12.
A method based on rational approximations is presented to interpolate the data from sinusoidal experiments in linear viscoelasticity. Bounds to the corresponding dynamical function and a discrete approximation to the spectrum are established. From this approximation the related viscoelastic functions can be computed. The method is checked by considering two theoretical models of physical interest and a satisfactory accuracy is achieved.  相似文献   

13.
The problem of flow around a V-shaped wing with supersonic leading edges is solved. The method employed is that of fitting with respect to a space variable in which the system of equations of motion is hyperbolic, using the computing scheme of V. V. Rusanov, A comparison between the results of these calculations and experimental data in relation to the pressure distribution along the wing span reveals excellent agreement, except for a limited region, in which the compression jump incident on the plane of the wing interacts with the boundary layer. A comparison between the results obtained by means of the oblique-jump equations and by numerical calculations indicates that the method in question is reasonably accurate.Translated from Izvestiya Akademu Nauk SSSE, Mekhanika Zhidkosti i Gaza, No. 3, pp. 180–185, May–June, 1971.The author is grateful to A. L. Gonor and V. V. Rusanov for interest in this work.  相似文献   

14.
This paper discusses the calculation of quasi-three-dimensional incompressible viscous flow by FEM. The Reynolds-averaged Navier-Stokes equations are solved in curvilinear co-ordinates by the reduced integration and penalty method (RIP). Streamline upwind artificial viscosity (SUAV) and the Baldwin-Lomax algebraic model of turbulence are used. Time discretization is by the general implicit θ-method.  相似文献   

15.
16.
The simulation of viscoelastic fluids is a challenging task from the theoretical and numerical points of view. This class of fluids has been extensively studied with the help of classical numerical methods. In this paper we propose a new approach based on the lattice Boltzmann method in order to simulate linear and non-linear viscoelastic fluids and in particular those described by the Oldroyd-B and FENE-P constitutive equations. We study the accuracy and stability of our model on three different benchmarks: the 3D Taylor–Green vortex decay, the simplified 2D four-rolls mill, and the 2D Poiseuille flow. To our knowledge, the methodology described in this work is a first attempt for the simulation of non-trivial flows of viscoelastic fluids using the lattice Boltzmann method to discretize the constitutive and conservation equations.  相似文献   

17.
The effective behaviour of linear viscoelastic heterogeneous material can be derived from the correspondence principle and the inversion of the obtained symbolic homogenized behavior. Various numerical methods were proposed to carry out this inversion. The collocation method, widely used, within this framework rests on a discretization of the characteristic spectrum in a sum of discrete lines for which it is necessary to determine the intensities and the positions by the minimization of the difference between the exact temporal function and its approximation. The classical method is based on a priori choice of the lines positions and on the optimization of their intensities. It is shown here that the combined optimization of the positions and the (positive) intensities lead to a minimization problem under constraints. In the simple case of an incompressible isotropic two-phase material, the assessment of the effective relaxation function with a continuum spectra or made up of discrete lines proves that the proposed method improves the predictions of the classical approach.  相似文献   

18.
19.
Accurate and robust finite element methods for computing flows with differential constitutive equations require approximation methods that numerically preserve the ellipticity of the saddle point problem formed by the momentum and continuity equations and give numerically stable and accurate solutions to the hyperbolic constitutive equation. We present a new finite element formulation based on the synthesis of three ideas: the discrete adaptive splitting method for preserving the ellipticity of the momentum/continuity pair (the DAVSS formulation), independent interpolation of the components of the velocity gradient tensor (DAVSS-G), and application of the discontinuous Galerkin (DG) method for solving the constitutive equation. We call the method DAVSS-G/DG. The DAVSS-G/DG method is compared with several other methods for flow past a cylinder in a channel with the Oldroyd-B and Giesekus constitutive models. Results using the Streamline Upwind Petrov–Galerkin method (SUPG) show that introducing the adaptive splitting increases considerably the range of Deborah number (De) for convergence of the calculations over the well established EVSS-G formulation. When both formulations converge, the DAVSS-G and DEVSS-G methods give comparable results. Introducing the DG method for solution of the constitutive equation extends further the region of convergence without sacrificing accuracy. Calculations with the Oldroyd-B model are only limited by approximation of the almost singular gradients of the axial normal stress that develop near the rear stagnation point on the cylinder. These gradients are reduced in calculations with the Giesekus model. Calculations using the Giesekus model with the DAVSS-G/DG method can be continued to extremely large De and converge with mesh refinement.  相似文献   

20.
Most of the solutions in the development of methods of viscoelastic stress analysis have dealt with incompressible materials or materials with restrictions in dilatation. It is influenced in part by the increasing complexity due to the additional operator which represents the viscoelastic characteristics in dilatation. A simple procedure of solution is suggested in this paper which shows that a certain class of problems for compressible materials can be solved with the similar simplicity as the analysis of corresponding incompressible solids. Examples are given for problems with spherical boundaries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号