首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In 1997, four dosimeter packages, each of which contains two CR-39 plates and 18 TLDs (Mg2SiO4:Tb), were placed inside the MIR Space Station and flew on an orbit with an inclination angle of 51.6 degrees and an altitude of approximately 400 km for 40 days. We estimated the absorbed doses, dose equivalents and effective quality factors during the flight by combining CR-39 data and TLD data. We then compared these results to those obtained with the same analysis method from the dosimeter packages on board Space Shuttle missions STS-79, -84 and -91 that flew along the same orbit. Finally, the differences between our results and those obtained by another group using passive dosimeters on the MIR are discussed.  相似文献   

2.
Recently, space radiation dosimetry measurements were made by passive and active detectors inside the Spacelab [STS-47 (FMPT): 300km, 57°, STS-65 (IML-2 mission): 300km, 28.5°]. The LET distributions obtained by antioxidant doped CR-39 inside the Spacelab were compared with those measured by the tissue equivalent proportional counter (TEPC) and the real time radiation monitoring device (RRMD) consisting of eight silicon detectors. While both distributions by CR-39 are in good agreement with those obtained by active detectors over the region of LET of several tens to 200 keV/μm, a significant difference in the LET region of smaller than several tens keV/μm is seen. It is considered to be caused by the dip angle dependence of track formation sensitivity in CR-39. The track formation sensitivity for different dip angle were measured for several high heavy energy ions. Using these results, the correction for the dip angle was made for the LET distribution. The corrected result is consistent with the results obtained by active detectors.  相似文献   

3.
Space radiation dosimetry measurements have been made on board the Space Shuttle STS-65 in the Second International Microgravity Laboratory (IML-2). In these measurements, three kinds of detectors were used; one is a newly developed active detector telescope called “Real-time Radiation Monitoring Device (RRMD)” utilizing silicon semi-conductor detectors and others are conventional detectors of thermoluminescence dosimeters (TLDs) and CR-39 plastic track detectors. Using the RRMD detector, the first attempt of real-time monitoring of space radiation has been achieved successfully for a continuous period of 251.3 h, giving the temporal variations of LET distribution, particle count rates, and rates of absorbed dose and dose equivalent. The RRMD results indicate that a clear enhancement of the number of trapped particles is seen at the South Atlantic Anomaly (SAA) without clear enhancement of dose equivalent, while some daily periodic enhancements of dose equivalent due to high LET particles are seen at the lower geomagnetic cutoff regions for galactic cosmic ray particles (GCRs). Therefore, the main contribution to dose equivalent is seen to be due to GCRs in this low altitude mission (300 km). Also, the dose equivalent rates obtained by TLDs and CR-39 ranged from 146.9 to 165.2 μSv/day and the average quality factors from 1.45 to 1.57 depending on the locations and directions of detectors inside the Space-lab at this highly protected orbit for space radiation with a small inclination (28.5°) and a low altitude (300 km). The LET distributions obtained by two different detectors, RRMD and CR-39, are in good agreement in the region of 15–200 keV/mm and difference of these distributions in the regions of LET < 15 keV/mm and LET > 200 keV/mm can be explained by considering characteristics of CR-39 etched track formation especially for the low LET tracks.  相似文献   

4.
Dosimetric measurements on the Space Shuttle Missions STS-84, -89 and -91 have been made by the real-time radiation monitoring device III (RRMD-III). Simultaneously, another dosimetry measurement was made by the Dosimetry Telescope (DOSTEL) on STS-84 and by the tissue-equivalent proportional counter (TEPC) on STS-91. First, the RRMD-III instrument is described in detail and its results summarized. Then, the results of DOSTEL and TEPC are compared with those of the RRMD-III. Also, the absorbed doses obtained by TLD (Mg2SiO4) and by RRMD-III on board STS-84 and -91 are compared.  相似文献   

5.
We have developed a real-time, Bonner Ball-type (neutron energy range is from thermal to 15 MeV) neutron spectral measurement system (Bonner Ball Neutron Detector (BBND)) for use on board the International Space Station (ISS). From measurements taken inside STS-89 (S/MM-8), we successfully distinguished neutrons from protons and other particles in a mixed radiation field; a task hitherto considered difficult. Although the experimental period was short, only 3.5 days (January 24-27, 1998), we were able to obtain energy spectral data and the Earth's neutron dose-equivalent map for the ISS orbital conditions (altitude 400 km, orbit inclination angle 51.6 degrees). A method for calculating the neutron energy spectrum and compensating for the particle interaction with the sensors is also described in detail.  相似文献   

6.
A joint NASA-Russian study of the radiation environment inside a SPACEHAB 2 locker on Space Shuttle flight STS-57 was conducted. The Shuttle flew in a nearly circular orbit of 28.5 degrees inclination and 462 km altitude. The locker carried a charged particle spectrometer, a tissue equivalent proportional counter (TEPC), and two area passive detectors consisting of combined NASA plastic nuclear track detectors (PNTDs) and thermoluminescent detectors (TLDs), and Russian nuclear emulsions, PNTDs and TLDs. All the detector systems were shielded by the same Shuttle mass distribution. This makes possible a direct comparison of the various dose measurement techniques. In addition, measurements of the neutron energy spectrum were made using the proton recoil technique. The results show good agreement between the integral LET spectrum of the combined galactic and trapped particles using the tissue equivalent proportional counter and track detectors between about 15 keV/micrometers and 200 keV/micrometers. The LET spectrum determined from nuclear emulsions was systematically lower by about 50%, possibly due to emulsion fading. The results show that the TEPC measured an absorbed dose 20% higher than the TLDs, due primarily to an increased TEPC response to neutrons and a low sensitivity of TLDs to high LET particles under normal processing techniques. There is a significant flux of high energy neutrons that is currently not taken into consideration in dose equivalent calculations. The results of the analysis of the spectrometer data will be reported separately.  相似文献   

7.
Human will be sooner or later return to the moon and will eventually travel to the planets near Earth. Space radiation hazards are an important concern for human space flight in deep space where galactic cosmic rays (GCR) and solar energetic particles are dominated and radiation is much stronger than that in LEO (Low Earth Orbit) because in deep space there is no magnetosphere to screen charged particle and no big planet nearby to shadow the spacecraft.Research indicates that the impact of particle radiation on humans depends strongly on the particles' linear energy transfer (LET) and the radiation risk is dominated by high LET radiation. Therefore, radiation research on high LET should be emphasized and conducted systematically so as to make radiation risk as low as reasonably achievable (ALARA) for astronauts.Radiation around the moon can be measured with silicon detectors and/or CR-39 plastic nuclear track detectors (PNTDs). At present stage the silicon detectors are one of the preferred active dosimeters which are sensitive to all LET and CR-39 detectors are the preferred passive dosimeters which are sensitive to high LET (≥5 keV/μm water). CR-39 PNTDs can be used as personal dosimeters for astronauts. Both the LET spectrum and the charge spectrum for charged particles in space can be measured with silicon detectors and CR-39 detectors.Calibrations for a detector system combined with the silicon detectors CRaTER (Cosmic Rays Telescope for the Effects of Radiation) from Boston University and Massachusetts Institute of Technology, and the CR-39 PNTDs from JSC (Johnson Space Center) – SRAG (Space Radiation Analysis Group) were conducted by exposing the detector system to the accelerator generated protons and heavy ions. US space mission for the radiation measurement around the moon using CRaTER was carried out in 2009.Results obtained from the calibration exposures indicate an excellent agreement between LET spectrum and charge spectrum measured with CR-39 detectors and simulated with PHITS (Particle and Heavy Ion Transport System).This paper introduces the LET spectrum method and charge spectrum method using CR-39 PNTDs and the Monte Carlo simulation method for CR-39 detectors, presents and compares the results measured with CR-39 PNTDs and simulated for CR-39 detectors exposed to heavy irons (600 MeV/n) in BNL (Brookhaven National Laboratory) in front and behind the CRaTER.  相似文献   

8.
We studied the track response for the copolymer of CR-39 monomer with N-isopropylacrylamide (NIPAAm) as well as etching properties. It was found that copoly (CR-39/NIPAAm/Naugard 445) composed in wieght ratio of 99/1/0.01 is highly sensitive to low LET particles in the region below 10 keV/μm of LET and able to record normally incident particles of LET down to 1.5 keV/μm, recording protons up to the energy of 27 MeV. These results were compared with the responses for two types of CR-39 detectors containing a small quantity of antioxidant. The threshold energy proton registration is discussed.  相似文献   

9.
《Radiation measurements》2007,42(9):1499-1506
High LET (linear energy transfer) radiation is the main contributor to the radiation field in low Earth orbit (LEO) in terms of dose equivalent. CR-39 plastic nuclear track detectors (PNTDs) can measure the LET spectrum and charge spectrum for the complicated radiation field in space. Previous research indicated that the sensitivity of CR-39 is different for CR-39 PNTDs working in different oxygen environments. LET calibration for CR-39 detectors in different oxygen environments is needed. Almost all the previous LET calibration work was carried out for CR-39 detectors in good-oxygen condition, LET calibration work for CR-39 in poor-oxygen condition has not been conducted until our work. Systematic LET calibrations were carried out by JSC-SRAG (Space Radiation Analysis Group) for CR-39 detectors working in different oxygen environments and abundant results of LET calibrations were obtained. This paper introduces the method for CR-39 LET calibration, presents and discusses the calibration results and some applications.  相似文献   

10.
A joint investigation between the United States and Russia to study the radiation environment inside the Space Shuttle flight STS-60 was carried out as part of the Shuttle-Mir Science Program (Phase 1). This is the first direct comparison of a number of different dosimetric measurement techniques between the two countries. STS-60 was launched on 3 February 1994 in a nearly circular 57 degrees x 353 km orbit with five U.S. astronauts and one Russian cosmonaut for 8.3 days. A variety of instruments provided crew radiation exposure, absorbed doses at fixed locations, neutron fluence and dose equivalent, linear energy transfer (LET) spectra of trapped and galactic cosmic radiation, and energy spectra and angular distribution of trapped protons. In general, there is good agreement between the U.S. and Russian measurements. The AP8 Min trapped proton model predicts an average of 1.8 times the measured absorbed dose. The average quality factor determined from measured lineal energy, y, spectra using a tissue equivalent proportional counter (TEPC), is in good agreement with that derived from the high temperature peak in the 6LiF thermoluminescent detectors (TLDs). The radiation exposure in the mid-deck locker from neutrons below 1 MeV was 2.53 +/- 1.33 microSv/day. The absorbed dose rates measured using a tissue equivalent proportional counter, were 171.1 +/- 0.4 and 127.4 +/- 0.4 microGy/day for trapped particles and galactic cosmic rays, respectively. The combined dose rate of 298.5 +/- 0.82 microGy/day is about a factor of 1.4 higher than that measured using TLDs. The westward longitude drift of the South Atlantic Anomaly (SAA) is estimated to be 0.22 +/- 0.02 degrees/y. We evaluated the effects of spacecraft attitudes on TEPC dose rates due to the highly anisotropic low-earth orbit proton environment. Changes in spacecraft attitude resulted in dose-rate variations by factors of up to 2 at the location of the TEPC.  相似文献   

11.
Several types of copolymers of CR-39 were prepared to find its usefulness as a nuclear track detector of high sensitivity. Track responses of these copolymers were investigated by irradiating energetic ions from proton through Ar. The copolymer of CR-39 monomer with N-isopropylacrylamide (NIPAAm) shows higher sensitivity than that of pure CR-39 for low LET particles such as protons. Preliminary results are reported for the track responses of copolymers (CR-39/NIPAAm) with various contents of NIPAAm as well as the etching properties.  相似文献   

12.
A tissue equivalent proportional counter designed to measure the linear energy transfer spectra (LET) in the range 0.2-1250 keV/micrometer was flown in the Kvant module on the Mir orbital station during September 1994. The spacecraft was in a 51.65 degrees inclination, elliptical (390 x 402 km) orbit. This is nearly the lower limit of its flight altitude. The total absorbed dose rate measured was 411.3 +/- 4.41 microGy/day with an average quality factor of 2.44. The galactic cosmic radiation (GCR) dose rate was 133.6 microGy/day with a quality factor of 3.35. The trapped radiation belt dose rate was 277.7 microGy/day with an average quality factor of 1.94. The peak rate through the South Atlantic Anomaly was approximately 12 microGy/min and nearly constant from one pass to another. A detailed comparison of the measured LET spectra has been made with radiation transport models. The GCR results are in good agreement with model calculations; however, this is not the case for radiation belt particles and again points to the need for improving the AP8 omni-directional trapped proton models.  相似文献   

13.
Recently, several new etchants have been reported for CR-39 detector (Molten Ba(OH)2. 8H2O as an etchant for CR-39 detector, Radiat. Meas. 37 (2003) 205; Discovery of new etchants for CR-39 detector, Radiat. Meas. (2004)). We have made further progress in this direction and have unveiled two more new etchants which are reported in this article. CR-39 detectors were irradiated with fission fragments and alpha particles from a thin 252Cf disc source. The irradiated detectors were then etched in our newly introduced etching solutions as well as in conventionally used 6 M NaOH aqueous solution at 70 degrees C. The newly prepared etching solutions included NaOH dissolved in methanol and NaOH dissolved in methanol + water. Optimum values of NaOH concentration in methanol as well as in methanol + water were determined. Optimum etching temperatures were also determined for both the above-mentioned etchants. From fission and alpha track diameters, bulk etching rate (VB), track etching rate (VT) and etching efficiency (eta) were determined and compared with that obtained for 6 M NaOH at 70 degrees C. Both the newly introduced etchants were found more efficient than the conventionally used 6 M aqueous NaOH (64%) at 70 degrees C and have relatively much smaller etching time.  相似文献   

14.
翟鹏济 《物理》2000,29(7):397-400,392
介绍了一种核径迹探测器CR-39塑料的特性,这种探测器对逞电粒子非常灵敏,它还具有稳定、透明等特点,可记录p、a粒子,裂变碎片和其他带电粒子,它是现有固体核径迹探测器中能量沉积密度探测阈最低的材料,介绍了CR-39对带电粒子的响应,给出了各种带电粒子的vT对限定能量损失(REL)的响应曲线,利用CR-39与转换屏的组合还可测定能量范围广的中子能谱,可作为方便的个人中子剂量计,介绍了CR-39在研究  相似文献   

15.
In this work, we have studied the effect of the radiation damage caused by the incident particles on the activation energy of etching for CR-39 samples. The damage produced by the incident particle is expressed in terms of the linear energy transfer (LET). CR-39 samples from American Acrylic were irradiated to three different LET particles. These are N (LET200 = 20 KeV/μm) as a light particle, Fe (LET200 = 110 KeV/μm) as a medium particle and fission fragments (ff) from a 252Cf source as heavy particles. In general the bulk etch rate was calculated using the weight difference method and the track etch rate was determined using the track geometry at various temperatures (50–90 °C) and concentrations (4–9 N) of the NaOH etchant. The average activation energy Fb related to the bulk etch rate vb was calculated from ln vb vs. l/T. The average activation energy Et related to the track etch rate vt was estimated from ln vt vs. l/T. It is shown that activation energy of etching is a constant value for CR-39 detector where Et was found to be independent on the damage produced by the incident particle.  相似文献   

16.
After reporting the excellent etching properties of molten Ba(OH)2 8H2O as an etchant, we now report some more new and efficient etchants for CR-39 detector. CR-39 detectors were irradiated with fission fragments and alpha particles with a thin 252Cf source. The irradiated detectors were etched in a number of our newly introduced etching solutions as well as in conventionally used 6 M NaOH at 70 degrees C. The newly prepared etching solutions included NaOH/ethanol and NaOH/1-propanol. Processing conditions were optimized for these etchants. From fission and alpha track diameters, bulk etching velocity (VB), track etching velocity (VT), etching efficiency (eta) and their activation energies were determined and compared with that obtained for 6M NaOH at 70 degrees C.  相似文献   

17.
Intercomparison of radiation measurements on STS-63   总被引:1,自引:0,他引:1  
A joint NASA Russia study of the radiation environment inside the Space Shuttle was performed on STS-63. This was the second flight under the Shuttle-Mir Science Program (Phase 1). The Shuttle was launched on 2 February 1995, in a 51.65° inclination orbit and landed at Kennedy Space Center on 11 February 1995, for a total flight duration of 8.27 days. The Shuttle carried a complement of both passive and active detectors distributed throughout the Shuttle volume. The crew exposure varied from 1962 to 2790 μGy with an average of 2265.8 μGy or 273.98 μGy/day. Crew exposures varied by a factor of 1.4, which is higher than usual for STS mission. The flight altitude varied from 314 to 395 km and provided a unique opportunity to obtain dose variation with altitude. Measurements of the average east-west dose variation were made using two active solid state detectors. The dose rate in the Spacehab locker, measured using a tissue equivalent proportional counter (TEPC), was 413.3 μGy/day, consistent with measurements made using thermoluminescent detectors (TLDs) in the same locker. The average quality factor was 2.33, and although it was higher than model calculations, it was consistent with values derived from high temperature peaks in TLDs. The dose rate due to galactic cosmic radiation was 110.6 μGy/day and agreed with model calculations. The dose rate from trapped particles was 302.7 μGy/day, nearly a factor of 2 lower than the prediction of the AP8 model. The neutrons in the intermediate energy range of 1–20 MeV contributed 13 μGy/day and 156 μSv/day, respectively. Analysis of data from the charged particle spectrometer has not yet been completed.  相似文献   

18.
Radiation measurement on the International Space Station   总被引:1,自引:0,他引:1  
The results of an investigation of radiation environment on board the ISS with apogee/perigee of 420/380 km and inclination 51.6 degrees are presented. For measurement of important characteristics of cosmic rays (particles fluxes, LET spectrum, equivalent doses and heavy ions with Z > or = 2) a nuclear photographic emulsion as a controllable threshold detector was used. The use of this detector permits a registration of the LET spectrum of charged particles within wide range of dE/dx and during the last years it has already been successfully used on board the MIR station, Space Shuttles and "Kosmos" spacecrafts. An integral LET spectrum was measured in the range 0.5-2.2 x 10(3) keV/micrometers and the value of equivalent dose 360 microSv/day was estimated. The flux of biologically dangerous heavy particles with Z > or = 2 was measured (3.85 x 10(3) particles/cm2).  相似文献   

19.
Summary A search has been made on the charge-changing partial cross-sections by using 0.927 GeV/n238U ion from LBL BEVALAC projected at an angle 30° on27Al target and CR-39 (DOP) was used as analyser. The irradiated plastic sheets were duly etched for one hour in 6.25N NaOH solution and about 1680 cone lengths at both the surfaces of the CR-39 (DOP) sheets were optically measured. The cone length distribution exhibits the existence of U fragments in the charge range 84≤Z≤91 and the estimated partial cross-sections range from 60 to 400 mb. The present data are in accord with the fit to the extrapolated data of Binnset al.  相似文献   

20.
In radiation cancer therapies using energetic charged particles such as proton/heavy-ion therapy and boron neutron capture therapy (BNCT), studies on radiation-induced biological response at cellular level are important because the radiation damage from energetic charged particles is highly localized along their paths and the radiation sensitivity is quite different in each cellular organelle. In such studies the information on the position of charged particle impact in biological cells is necessary. A novel method for high-resolution nuclear track mapping in detailed cellular histology has been developed. In this technique, biological specimens mounted on CR-39 plates are exposed to energetic charged particles. The irradiated samples are exposed to UV, and then etched for a short time. Both etch pits of nuclear tracks and relief for transmission UV image of the specimen can be observed on the CR-39 surface with an atomic force microscope (AFM) at about 100 nm resolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号