首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 15 毫秒
1.
The solubilities of solid 1-hexyne in liquid argon at 87.3 and in liquid nitrogen at 77.4 K have been measured by the filtration method. The hydrocarbon contents in solutions were determined using gas chromatography. GC–MS was used to identify impurities in 1-hexyne. The experimental value of the mole fraction solubility of solid 1-hexyne in liquid argon at 87.3 K is (0.85 ± 0.19) × 10–7 and (1.25 ± 0.08) × 10–8 in liquid nitrogen at 77.4 K. The Preston–Prausnitz method was used for calculation of the solubilities of solid hydrocarbon in liquid argon in the temperature range 84.0–110.0 K and in liquid nitrogen from 64.0 to 90.0 K. The solvent–solute interaction parameters l 12 were also calculated. At 90.0 K liquid argon is a better solvent for solid 1-hexyne than is liquid nitrogen.  相似文献   

2.
The solubilities of 1-pentene ice in liquid nitrogen at a temperature of 77.4 K and in liquid argon at 87.3 K have been measured by the filtration method. The 1-pentene content in solution was determined using gas chromatography. The experimental value of the mole fraction solubility of 1-pentene ice in liquid nitrogen at 77.4 K is: (1.28±0.25)×10–7 and (4.11±0.44)×10–7 in liquid argon at 87.3 K. The Preston–Prausnitz method was used for calculation of the solubilities of 1-pentene ice in liquid nitrogen in the temperature range 64.0–90.0 K and in liquid argon in the temperature range 84.0–90.0 K. The parameters l 12 were also calculated. At 90.0 K liquid argon is the better solvent for 1-pentene ice than is liquid nitrogen.  相似文献   

3.
The solubility of solid 2-methyl-1,3-butadiene (isoprene) in liquid argon at a temperature of 87.3 K and in liquid nitrogen at 77.4 K has been measured by the filtration method. The hydrocarbon contents in solutions were determined using gas chromatography. GC–MS was used to identify impurities in the solute. The experimental value of the mole fraction solubility of solid isoprene in liquid argon at 87.3 K is (1.41 ± 0.27) × 10–6 and (1.56 ± 0.36) × 10–7 in liquid nitrogen at 77.4 K. The Preston–Prausnitz method was used for calculation of the solubilities of solid hydrocarbon in liquid argon in the temperature range 84.0–110.0 K and in liquid nitrogen from 64.0 to 90.0 K. The solvent–solute interaction parameters l 12 were also calculated. At 90.0 K liquid argon is a better solvent for isoprene than is liquid nitrogen. The experimental values of the solubilities of isoprene in liquid argon and nitrogen were compared with results obtained for selected unsaturated and aromatic hydrocarbons.  相似文献   

4.
The solubilities of solid pentane, 2-methylbutane (isopentane), and cyclopentane in liquid argon at 87.3 K have been measured by the filtration method. The C5 hydrocarbon content in solution was determined using gas chromatography. The solubilities of the C5 hydrocarbons in liquid argon at 87.3K vary from 0.61 × 10–7 mole fraction for cyclopentane, to 1.37 × 10–7 mole fraction for pentane, and 8.83 × 10–6 mole fraction for 2-methylbutane. The Preston–Prausnitz method was used for calculation of the solubilities of solid C5 hydrocarbons in liquid argon in the temperature range 84–110 K and in liquid nitrogen in the range 64–90K. The values of the solvent–solute interaction constant l 12 were also calculated.  相似文献   

5.
The solubilities of solid hexane and cyclohexane in liquid argon at 87.3 K have been measured by the filtration method. The hexane and cyclohexane content in solution was determined using gas chromatography. The solubilities of the C6 hydrocarbons in liquid argon at 87.3 K are (0.56 ± 0.11) × 10-7 mole fraction for hexane and (1.04 ± 0.30) × 10-7 mole fraction for cyclohexane. The Preston–Prausnitz method was used for calculation of the solubilities of solid hexane and cyclohexane in liquid argon in the temperature range 84–110 K. The values of the solvent–solute interaction constant l12 were also calculated.  相似文献   

6.
The solubilities of solid 1-hexene and 2-methylpentane in liquid argon at a temperature of 87.3 K and in liquid nitrogen at 77.4 K have been measured by the filtration method. The hydrocarbon contents in solutions were determined using gas chromatography. The experimental value of the mole fraction solubility of solid 1-hexene in liquid argon at 87.3 K is (3.87 ± 0.74) × 10-7 and (7.94 ± 2.47) × 10-9 in liquid nitrogen at 77.4 K. The experimental value of the mole fraction solubility of solid 2-methylpentane in liquid argon at 87.3 K is (1.45 ± 0.36) × 10-5 and (6.80 ± 2.16) × 10-8 in liquid nitrogen at 77.4 K. The Preston–Prausnitz method was used for calculation of the solubilities of solid hydrocarbons in liquid argon in the temperature range 84.0–110.0 K and in liquid nitrogen from 64.0 to 90.0 K. The solvent–solute interaction parameters 112 were also calculated. At 90.0 K, liquid argon is a better solvent for solid 1-hexene and 2-methylpentane than is liquid nitrogen.  相似文献   

7.
The solubilities of pentane, 2-methylbutane (isopentane) and cyclopentane were measured in liquid nitrogen at 77.4 K by the filtration method. The solubilities of the C5 hydrocarbons in liquid nitrogen at 77.4 K vary from 1.8×10–8 mole fraction for cyclopentane, to 3.0×10–8 mole fraction for pentane and 3.2×10–7 mole fraction for 2-metylbutane. Correlations between the solubilities of alkanes, alkenes and cyclic hydrocarbons in liquid nitrogen, and some properties of solutes [normal boiling point T b , enthalpy of vaporization at normal boiling point H b and the mean of the enthalpy of vaporization and the enthalpy of melting [(H b +H m )/2] are presented.  相似文献   

8.
A comprehensive analytical procedure for polycyclic aromatic hydrocarbons, petroleum-derived hydrocarbons and phenol using the isotope dilution method and employing high-resolution gas chromatography and mass spectrometry was developed and validated for leachates from source-term experiments and the different sampling sites of lysimeters. The use of glassware and other materials is efficiently limited to minimize the risk of contamination. The relative standard deviation elaborated allows precise reliable measurements. Limit of detection and recovery data are useful to judge the quality of each single measurement.  相似文献   

9.
The constant emergence of new psychoactive substances is a challenge to clinical and forensic toxicologists who need to constantly update analytical techniques to detect them. A large portion of these substances are synthetic cannabinoids. The aim of this study was to develop a rapid and simple method for the determination of synthetic cannabinoids and their metabolites in urine and blood using gas chromatography–mass spectrometry. The method involves an ultrasound‐assisted dispersive liquid–liquid microextraction that implies a rapid procedure, giving excellent extraction efficiencies with minimal use of toxic solvents. This is followed by silylation and analysis with gas chromatography–mass spectrometry. The chromatographic method allows for the separation and identification of 29 selected synthetic cannabinoids and some metabolites. The method was validated on urine and blood samples with the ability to detect and quantify all analytes with satisfactory limits of detection (from 1 to 5 ng/mL), limits of quantification (5 ng/mL), and selectivity and linearity (in the range of 5–200 ng/mL). The developed assay is highly applicable to laboratories with limited instrumental availability, due to the use of efficient and low‐cost sample preparation and instrumental equipment. The latter may contribute to enhance the detection of new psychoactive substances in clinical and forensic toxicology laboratories.  相似文献   

10.
Sulcardine sulfate (Sul), a novel antiarrhythmic agent, is currently in phase I and phase II clinical trials. To elucidate its clinical pharmacokinetic characteristics, a rapid and accurate liquid chromatography–tandem mass spectrometry (LC–MS/MS) method has been developed and validated for the quantification of Sul in human plasma. Plasma samples were precipitated by acetonitrile and isotope‐labeled sulcardine was added as internal standard. The analysis was carried out on a Capcell Pak C18 MG III column (100 × 2.0 mm, 5 μm) with 0.1% formic acid in acetonitrile solution and water (17:83, v/v) as mobile phase. The linear range was 5.0–1000 ng/mL for Sul, with a lower limit of quantification of 5.0 ng/mL. The intra‐ and inter‐batch CVs were within ±11.0% and the accuracies were 4.9–107.3%. Our method, for the first time, allows the rapid (only 3.0 min) and accurate quantification of Sul in human plasma. The method has been successfully applied in the pharmacokinetic study of Sul in a clinical trial following oral administration of Sul to healthy volunteers. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
A sensitive and specific liquid chromatographic–electrospray ionization mass spectrometric method was developed for quantification of salvianolic acid B in rat plasma with resveratrol as the internal standard. The analytes were separated on a reversed‐phase column with acetonitrile (40%) and water (60%) containing 0.75% formic acid as mobile phase at a flow rate of 1 mL/min. Liquid–liquid extraction was adopted for the sample preparation, and the analytes were determined using electrospray negative ionization mass spectrometry in the selective monitoring mode. The method was validated over the concentration range 0.1–40 µg/mL using 0.1 mL of plasma with coefficients of correlation >0.999. The intra‐ and inter‐day precisions of analysis were <10%, and accuracy ranged from 94 to 101%. This method was successfully applied to a pharmacokinetics of salvianolic acid B in rats. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
A specific, sensitive and stable high‐performance liquid chromatographic–tandem mass spectrometry (LC‐MS/MS) method was developed and validated for the quantitative determination of methyl 3‐amino‐6‐methoxythieno [2,3‐b]quinoline‐2‐carboxylate (PU‐48), a novel diuretic thienoquinolin urea transporter inhibitor in rat plasma. In this method, the chromatographic separation of PU‐48 was achieved with a reversed‐phase C18 column (100 × 2.1 mm, 3 μm) at 35°C. The mobile phase consisted of acetonitrile and water with 0.05% formic acid added with a gradient elution at flow rate of 0.3 mL/min. Samples were detected with the triple‐quadrupole tandem mass spectrometer with multiple reaction monitoring mode via electrospray ionization source in positive mode. The retention time were 6.2 min for PU‐48 and 7.2 min for megestrol acetate (internal standard, IS). The monitored ion transitions were mass‐to‐charge ratio (m/z) 289.1 → 229.2 for PU‐48 and m/z 385.3 → 267.1 for the internal standard. The calibration curve for PU‐48 was linear over the concentration range of 0.1–1000 ng/mL (r2 > 0.99), and the lower limit of quantitation was 0.1 ng/mL. The precision, accuracy and stability of the method were validated adequately. The developed and validated method was successfully applied to the pharmacokinetic study of PU‐48 in rats.  相似文献   

13.
Selenium is an essential element for the normal cellular function of living organisms. However, selenium is toxic at concentrations of only three to five times higher than the essential concentration. The inorganic forms (mainly selenite and selenate) present in environmental water generally exhibit higher toxicity (up to 40 times) than organic forms. Therefore, the determination of low levels of different inorganic selenium species in water is an analytical challenge. Solid-phase extraction has been used as a separation and/or preconcentration technique prior to the determination of selenium species due to the need for accurate measurements for Se species in water at extremely low levels. The present paper provides a critical review of the published methods for inorganic selenium speciation in water samples using solid phase extraction as a preconcentration procedure. On the basis of more than 75 references, the different speciation strategies used for this task have been highlighted and classified. The solid-phase extraction sorbents and the performance and analytical characteristics of the developed methods for Se speciation are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号