首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
We derive some higher-dimensional perfect fluid cosmologies, which are of the Bianchi type-V extension in (1+n) dimensions. Exact solutions are given for the cases of radiation, stiff matter and dust.  相似文献   

2.
Two cosmological models with non-phantom matter having the same expansion of the universe as phantom cosmologies are constructed in Bianchi type-I universe. The exact solutions to the corresponding Einstein field equations have been obtained. The cosmological parameters have been obtained in two interesting cases (i) γ=0 and (ii) γ=1/3. We have also discussed the well-known astrophysical phenomena, namely the look-back time, luminosity distance and event horizon with redshift.  相似文献   

3.
We use one of the simplest forms of the K-essence theory and apply it to the anisotropic Bianchi type IX cosmological model, with a barotropic perfect fluid modeling the usual matter content. We show that the most important contribution of the scalar field occurs during a stiff matter phase. Also, we present a canonical quantization procedure of the theory which can be simplified by reinterpreting the scalar field as an exotic part of the total matter content. The solutions to the Wheeler-DeWitt equation were found using the Bohmian formulation Bohm (Phys. Rev. 85(2):166, 1952) of quantum mechanics, employing the amplitude-real-phase approach Moncrief and Ryan (Phys. Rev. D 44:2375, 1991), where the ansatz for the wave function is of the form Ψ(? μ )=χ(?)W(? μ ) \(e^{- S(\ell ^{\mu })},\) , where S is the superpotential function, which plays an important role in solving the Hamilton-Jacobi equation.  相似文献   

4.
We consider a self-consistent system of Bianchi Type VI0 cosmology and binary mixture of perfect fluid and dark energy. The perfect fluid is taken to be one obeying the usual equation of state p=??? with ????[0,1]. The dark energy is considered to be either the quintessence or Chaplygin gas. Exact solutions to the corresponding Einstein??s field equations are obtained as a quadrature. Models with power-law and exponential expansion have discussed in detail.  相似文献   

5.
Within the scope of an anisotropic Bianchi type-VI cosmological model we have studied the evolution of the universe filled with perfect fluid and dark energy. To get the deterministic model of Universe, we assume that the shear scalar (σ) in the model is proportional to expansion scalar (?). This assumption allows only isotropic distribution of fluid. Exact solution to the corresponding equations are obtained. The EoS parameter for dark energy as well as deceleration parameter is found to be the time varying functions. Using the observational data qualitative picture of the evolution of the universe corresponding to different of its stages is given. The stability of the solutions obtained is also studied.  相似文献   

6.
A class of new LRS Bianchi type-I cosmological models with a variable cosmological term is investigated in presence of perfect fluid. A procedure to generate new exact solutions to Einstein’s field equations is applied to LRS Bianchi type-I space-time. Starting from some known solutions a class of new perfect fluid solutions of LRS Bianchi type-I are obtained. The cosmological constant Λ is found to be positive and a decreasing function of time which is supported by results from recent supernovae Ia observations. The physical and geometric properties of spatially homogeneous and anisotropic cosmological models are discussed.  相似文献   

7.
The dynamics of cosmological models with isotropic matter sources (perfect fluids) is extensively studied in the literature; in comparison, the dynamics of cosmological models with anisotropic matter sources is not. In this paper we consider spatially homogeneous locally rotationally symmetric solutions of the Einstein equations with a large class of anisotropic matter models including collisionless matter (Vlasov), elastic matter, and magnetic fields. The dynamics of models of Bianchi types I, II, and IX are completely described; the two most striking results are the following. (i) There exist matter models, compatible with the standard energy conditions, such that solutions of Bianchi type IX (closed cosmologies) need not necessarily recollapse; there is an open set of forever expanding solutions. (ii) Generic type IX solutions associated with a matter model like Vlasov matter exhibit oscillatory behavior toward the initial singularity. This behavior differs significantly from that of vacuum/perfect fluid cosmologies; hence “matter matters”. Finally, we indicate that our methods can probably be extended to treat a number of open problems—in particular, the dynamics of Bianchi type VIII and Kantowski-Sachs solutions.  相似文献   

8.
An algorithm is presented for generating new exact solutions of the Einstein equations for spatially homogeneous cosmological models of Bianchi type VI0. The energy-momentum tensor is of perfect fluid type. Starting from Dunn and Tupper's dust-filled universe, new classes of solutions are obtained. The solutions represent anisotropic universes filled with perfect fluid not satisfying the equation of state. Some of their physical properties are studied.  相似文献   

9.
Behaviors of quark matter and strange quark matter which exist in the first seconds of the early Universe in f(R) gravity are studied for Bianchi I and V universes. In this respect, we obtain exact solutions of the modified Einstein field equations by using anisotropy feature of Bianchi I and V space-times. In particular, we investigate exact f(R) functions for Bianchi I as the contribution of strange quark and quark matter. Also, we have concluded that quark matter may contribute to the early acceleration of the universe since quark matter behaves like phantom-type dark energy. Furthermore, obtained f(R) solutions represents early eras of the Universe since f(R) solutions for quark matter coincide with f(R) equations for inflation. From this point, we can reach the conclusion that quarks may be source of the early dark energy of the universe or source of little inflation due to their repulsive force.  相似文献   

10.
An attempt has been taken to study the feasibility of scale-invariant theory in Bianchi type VI h space-time with a time dependent gauge function (Dirac gauge) and a matter field in the form of a perfect fluid with isotropic matter pressure. It is found that Bianchi type VI h (h = 1) space-time is feasible in this theory whereas Bianchi type VI h (h = -1) and VI h (h = 0) space-times are not feasible. In the feasible case a non-singular model for the universe filled with disorder radiation is constructed and some of its physical behaviors are studied.  相似文献   

11.
A self-consistent system containing a nonlinear spinor field and a Bianchi type-I (BI) gravitational field is considered in the presence of a viscous fluid and the cosmological constant. Nonlinear terms in the Lagrangian spinor-field appear either due to a self-action, or as a result of interaction with a scalar field. They are given by power functions of the invariants I and J, constructed from the bilinear spinor forms S and P. As far as the viscosity is concerned, it is a function of the energy density ? exhibiting a power-law behavior. Self-consistent solutions of the spinor, scalar, and gravitational field equations are derived. The obtained solutions are expressed in terms of the function τ(t), where τ is the volume scale in the BI-type Universe. A system of equations for τ, H, and ? is derived, where H is the Hubble constant, and ? is the viscous-flow energy. Exact solutions of the system are found for some special choices of the nonlinearity and viscosity. A complete qualitative analysis of the evolution at the boundaries is performed, and numerical solutions are obtained in the most interesting cases. In particular, it is shown that the system has Big Rip type solutions, which is typical for systems containing a phantom matter.  相似文献   

12.
This paper is a study of the effects of anisotropic matter sources on the qualitative evolution of spatially homogenous cosmologies of Bianchi type VIII. The analysis is based on a dynamical system approach and makes use of an anisotropic matter family developed by Calogero and Heinzle which generalises perfect fluids and provides a measure of deviation from isotropy. Thereby the role of perfect fluid solutions is put into a broader context. The results of this paper concern the past and future asymptotic dynamics of locally rotationally symmetric solutions of type VIII with anisotropic matter. It is shown that solutions whose matter source is sufficiently close to being isotropic exhibit the same qualitative dynamics as perfect fluid solutions. However a high degree of anisotropy of the matter model can cause dynamics to differ significantly from the vacuum and perfect fluid case.  相似文献   

13.
Some new exact solutions of Einstein’s field equations have come forth within the scope of a spatially homogeneous and anisotropic Bianchi type-III space-time filled with barotropic fluid and dark energy by considering a variable deceleration parameter. We consider the case when the dark energy is minimally coupled to the perfect fluid as well as direct interaction with it. Under the suitable condition, the anisotropic models approach to isotropic scenario. We also find that during the evolution of the universe, the equation of state (EoS) for dark energy ω (de), in both cases, tends to ?1 (cosmological constant, ω (de)=?1), by displaying various patterns as time increases, which is consistent with recent observations. The cosmic jerk parameter in our derived models are in good agreement with the recent data of astrophysical observations under appropriate condition. It is observed that the universe starts from an asymptotic Einstein static era and reaches to the ΛCDM model. So from recently developed Statefinder parameters, the behaviour of different stages of the universe has been studied. The physical and geometric properties of cosmological models are also discussed.  相似文献   

14.
A self consistent system of Plane Symmetric gravitational field and a binary mixture of perfect fluid and dark energy in a modified theory of gravity are considered. The gravitational field plays crucial role in the formation of soliton-like solutions, i.e., solutions with limited total energy, spin, and charge. The perfect fluid is taken to be the one obeying the usual equation of state, i.e., p = γρ with γ∈ [0, 1] whereas, the dark energy is considered to be either the quintessence like equation of state or Chaplygin gas. The exact solutions to the corresponding field equations are obtained for power-law and exponential volumetric expansion. The geometrical and physical parameters for both the models are studied.  相似文献   

15.
We studied the Bianchi type-V universe filled with dark energy (DE) from a wet dark fluid (WDF) in the framework of f(R,T) gravity (Harko in Phys. Rev. D 84:024020, 2011). A new equation of state for the dark energy (DE) component of the universe has been used. It is modeled on the equation of state p=w(ρ?ρ ?) which can be describing a liquid, for example water. The exact solutions to the corresponding field equations are obtained for exponential and power-law volumetric expansion. It is observed that the universe can approach to isotropy monotonically even in the presence of wet dark fluid. Also we have discussed the well-known astrophysical phenomena, namely the look-back time, proper distance, the luminosity distance and angular diameter distance with redshift.  相似文献   

16.
A method for obtaining anisotropic, rotationless viscous fluid matter solutions of Bianchi type I and Segré type [1, 111] with the barotropic equation of state is presented. Solutions for which the anisotropy decreases exponentially or with a power law as well as solutions with average Hubble parameterH t –1 are discussed. Also, a class of solutions with constant anisotropy and Bianchi type VIh is found. The dominant energy condition holds and the transport coefficients show the right sign.  相似文献   

17.
In this paper, we report on results in the study of spatially homogeneous cosmological models with elastic matter. We show that the behavior of elastic solutions is fundamentally different from that of perfect fluid solutions already in the case of locally rotationally symmetric Bianchi type I models; this is true even when the elastic material resembles a perfect fluid very closely. In particular, the approach to the initial singularity is characterized by an intricate oscillatory behavior of the scale factors, while the future asymptotic behavior is described by isotropization rates that differ significantly from those of perfect fluids.  相似文献   

18.
We have studied the Bianchi type-V cosmological models with binary mixture of perfect fluid and dark energy in five dimensions. The perfect fluid is obeying the equation of state p=γρ with γ∈[0,1]. The dark energy is considered to be either the quintessence or the Chaplygin gas. The exact solutions of the Einstein’s field equations are obtained in quadrature form.  相似文献   

19.
We study how the constants G and Λ may vary in different theoretical models (general relativity (GR) with a perfect fluid, scalar cosmological models (SM) (“quintessence”) with and without interacting scalar and matter fields and three scalar-tensor theories (STT) with a dynamical Λ) in order to explain some observational results. We apply the program outlined in section II to study the Bianchi I models, under the self-similarity hypothesis. We put special emphasis on calculating exact power-law solutions which allow us to compare the different models. In all the studied cases we conclude that the solutions are isotropic and noninflationary. We also arrive at the conclusion that in the GR model with time-varying constants, Λ vanishes while G is constant. In the SM all the solutions are massless i.e. the potential vanishes and all the interacting models are inconsistent from the thermodynamical point of view. The solutions obtained in the STT collapse to the perfect fluid one obtained in the GR model where G is a true constant and Λ vanishes as in the GR and SM frameworks.  相似文献   

20.
We construct perfect fluid metrics with two symmetries by means of a recently developed geometrical method [1]. The Einstein equations are reduced to a single equation for a conformal factor. Under additional assumptions we obtain new cosmological solutions of Bianchi type II, VI0 and VII0. The solutions depend on an arbitrary function of time, which can be specified in order to satisfy an equation of state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号