首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, a new exponential state estimation method is proposed for switched Hopfield neural networks based on passivity theory. Through available output measurements, the main purpose is to estimate the neuron states such that the estimation error system is exponentially stable and passive from the control input to the output error. Based on augmented Lyapunov–Krasovskii functional, Jensen’s inequality, and linear matrix inequality (LMI), a new delay-dependent state estimator for switched Hopfield neural networks can be achieved by solving LMIs, which can be easily facilitated by using some standard numerical packages. The unknown gain matrix is determined by solving delay-dependent LMIs. Finally, a numerical example is provided to demonstrate the effectiveness of the proposed method.  相似文献   

2.
The issue of state estimation is studied for a class of neural networks with norm-bounded parameter uncertainties and time-varying delay. Some new linear matrix inequality (LMI) representations of delay-dependent stability criteria are presented for the existence of the desired estimator for all admissible parametric uncertainties. The proposed method is based on the S-procedure and an extended integral inequality which can be deduced from the well-known Leibniz–Newton formula and Moon’s inequality. The results extend some models reported in the literature and improve conservativeness of those in the case that the derivative of the time-varying delay is assumed to be less than one. Two numerical examples are given to show the effectiveness and superiority of the results.  相似文献   

3.
This paper is concerned with the sampled-data state estimation problem for neural networks with both Markovian jumping parameters and leakage time-varying delays. Instead of the continuous measurement, the sampled measurement is used to estimate the neuron states, and a sampled-data estimator is constructed. In order to make full use of the sawtooth structure characteristic of the sampling input delay, a discontinuous Lyapunov functional is proposed based on the extended Wirtinger inequality. A less conservative delay dependent stability criterion is derived via constructing a new triple-integral Lyapunov–Krasovskii functional and the famous Jenson integral inequality. Based on the Lyapunov–Krasovskii functional approach, a state estimator of the considered neural networks has been achieved by solving some linear matrix inequalities, which can be easily facilitated by using the standard numerical software. Finally, two numerical examples are provided to show the effectiveness of the proposed methods.  相似文献   

4.
In this paper, the sampled-data state estimation problem is investigated for neural networks with time-varying delays. Instead of the continuous measurement, the sampled measurement is used to estimate the neuron states, and a sampled data estimator is constructed. Based on the extended Wirtinger inequality, a discontinuous Lyapunov functional is introduced, which makes full use of the sawtooth structure characteristic of sampling input delay. New delay-dependent criteria are developed to estimate the neuron states through available output measurements such that the estimation error system is asymptotically stable. The criteria are formulated in terms of a set of linear matrix inequalities (LMIs), which can be checked efficiently by use of some standard numerical packages. Finally, a numerical example and its simulations are given to demonstrate the usefulness and effectiveness of the presented results.  相似文献   

5.
In this paper, the state estimation problem is investigated for neural networks with time-varying delays and Markovian jumping parameter based on passivity theory. The neural networks have a finite number of modes and the modes may jump from one to another according to a Markov chain. The main purpose is to estimate the neuron states, through available output measurements such that for all admissible time-delays, the dynamics of the estimation error is globally stable in the mean square and passive from the control input to the output error. Based on the new Lyapunov?CKrasovskii functional and passivity theory, delay-dependent conditions are obtained in terms of linear matrix inequalities (LMIs). Finally, a numerical example is provided to demonstrate effectiveness of the proposed method and results.  相似文献   

6.
Passivity analysis of stochastic neural networks with time-varying delays and parametric uncertainties is investigated in this paper. Passivity of stochastic neural networks is defined. Both delay-independent and delay-dependent stochastic passivity conditions are presented in terms of linear matrix inequalities (LMIs). The results are established by using the Lyapunov–Krasovskii functional method. In order to derive the delay-dependent passivity criterion, some free-weighting matrices are introduced. The effectiveness of the method is illustrated by numerical examples.  相似文献   

7.
In this paper, the problem of passivity analysis for uncertain neural networks with time-varying delays is considered. By constructing an augmented Lyapunov–Krasovskii’s functional and some novel analysis techniques, improved delay-dependent criteria for checking the passivity of the neural networks are established. The proposed criteria are represented in terms of LMIs (linear matrix inequalities) which can be easily solved by various convex optimization algorithms. Two numerical examples are included to show the superiority of our results.  相似文献   

8.
In this paper, we are concerned with the synchronization problem of a class of stochastic reaction-diffusion neural networks with time-varying delays and Dirichlet boundary conditions. By using the Lyapunov–Krasovskii functional method, feedback control approach and stochastic analysis technology, delay-dependent synchronization conditions including the information of reaction-diffusion terms are presented, which are expressed in terms of linear matrix inequalities (LMIs). The feedback controllers can be constructed by solving the derived LMIs. Finally, illustrative examples are given to show the effectiveness of the proposed technique.  相似文献   

9.
In this paper, the passivity problem is investigated for a class of uncertain neural networks with leakage delay and time-varying delay as well as generalized activation functions. By constructing appropriate Lyapunov–Krasovskii functionals, and employing Newton–Leibniz formulation and the free-weighting matrix method, several delay-dependent criteria for checking the passivity of the addressed neural networks are established in linear matrix inequality (LMI), which can be checked numerically using the effective LMI toolbox in MATLAB. Two examples with simulations are given to show the effectiveness and less conservatism of the proposed criteria.  相似文献   

10.
In this paper, the sampled-data state estimation problem is investigated for a class of recurrent neural networks with time-varying delay. Instead of the continuous measurement, the sampled measurement is used to estimate the neuron states, and a sampled-data estimator is constructed. By converting the sampling period into a bounded time-varying delay, the error dynamics of the considered neural network is derived in terms of a dynamic system with two different time-delays. Subsequently, by choosing an appropriate Lyapunov functional and using the Jensen??s inequality, a sufficient condition depending on the sampling period is obtained under which the resulting error system is exponentially stable. Then a sampled-data estimator is designed in terms of the solution to a set of linear matrix inequalities (LMIs) which can be solved by using available software. Finally, a numerical example is employed to demonstrate the effectiveness of the proposed sampled-data estimation approach.  相似文献   

11.
This paper is concerned with the delay-dependent synchronization criterion for stochastic complex networks with time delays. Firstly, expectations of stochastic cross terms containing the It? integral are investigated by utilizing stochastic analysis techniques. In fact, in order to obtain less conservative delay-dependent conditions for stochastic delay systems including stochastic complex (or neural) networks with time delays, how to deal with expectations of these stochastic cross terms is an important problem, and expectations of these stochastic terms were not dealt with properly in many existing results. Then, based on the investigation of expectations of stochastic cross terms, this paper proposes a novel delay-dependent synchronization criterion for stochastic delayed complex networks. In the derivation process, the mathematical development avoids bounding stochastic cross terms. Thus, the method leads to a simple criterion and shows less conservatism. Finally, a numerical example is provided to demonstrate the effectiveness of the proposed approach.  相似文献   

12.
This paper focuses the issue of state estimation for a class of switched discrete-time stochastic bidirectional associative memory (BAM) neural networks with time varying delay. The main purpose of this paper is to estimate the neuron states through available output measurements such that the dynamics of the error state system to be robustly exponentially stable. By employing average dwell time approach together with piecewise Lyapunov functional technique, a set of sufficient conditions is derived with respect to all admissible uncertainties, to guarantee the existence of the desired state estimator for the uncertain switched discrete-time BAM delayed neural networks. Specifically, we derive sufficient conditions to achieve robust state estimation with the characterization of complex effects of time delays, parameter uncertainties, and stochastic perturbations. In particular, the parameter uncertainties are assumed to be time varying and unknown, but norm bounded. It should be mentioned that our estimation results are delay dependent, which depend on not only the upper bounds of time delay, but also their lower bounds. More precisely, the desired estimator matrix gain is obtained in terms of the solution of the derived LMIs. Finally, numerical examples with a simulation result are given to illustrate the effectiveness and applicability of the obtained results.  相似文献   

13.
This paper is concerned with the problem of stability analysis for neural networks with time-varying delays. By constructing a newly augmented Lyapunov functional and some novel techniques, delay-dependent criteria to guarantee the asymptotic stability of the concerned networks are derived in terms of linear matrix inequalities (LMIs). The improvement of feasible region of the proposed criteria comparing with the previous works is shown by two numerical examples.  相似文献   

14.
In this paper, we investigate the problem of robust state estimator design for a class of uncertain discrete-time genetic regulatory networks (GRNs) with time varying delays and randomly occurring uncertainties. By introducing a new discretized Lyapunov–Krasovskii functional together with a free-weighting matrix technique, first we derive a set of sufficient conditions for the existence of global asymptotic state estimator for the discrete-time GRN model with time delays satisfying both the lower and the upper bound of the interval time-varying delay. Further, the obtained results are extended to deal the robust state estimator design for the discrete-time GRN model in the presence of randomly occurring uncertainties which obey certain mutually uncorrelated Bernoulli distributed white noise sequences. The proposed criterions are established in terms of linear matrix inequalities (LMIs) which can be easily solved via Matlab LMI toolbox. Finally, the robust state estimator design has been implemented in a gene network model to illustrate the applicability and usefulness of the obtained theory.  相似文献   

15.
This paper investigates the global asymptotic stability problem for recurrent neural networks with multiple time-varying delays. Using the free-weighting matrix technique, and incorporating the interconnected information between the upper bounds of multiple time-varying delays, two less conservative delay-dependent asymptotic stability conditions are proposed, which are expressed by linear matrix inequalities, and can be conveniently solved by the existing softwares. Numerical examples show the reduce conservatism of the obtained conditions.  相似文献   

16.
Synchronization of master–slave chaotic neural networks are well studied through asymptotic and exponential stability of error dynamics. Besides qualitative properties of error dynamics, there is a need to quantify the error in real-time experiments especially in secure communication system. In this article, we focused on quantitative analysis of error dynamics by finding the exact analytical error bound for the synchronization of delayed neural networks. Using the Halanay inequality, the error bound is going to be obtained in terms of exponential of given system parameters and delay. The time-varying coupling delay has been considered in the neural networks which does not require any restrictive condition on the derivative of the delay. The proposed method can also be applied to find error bound for state estimation problem. The analytical synchronization bound has been corroborated by two examples.  相似文献   

17.
This paper is concerned with the passivity analysis for a class of discrete-time switched neural networks with various activation functions and mixed time delays. The mixed time delays under consideration include time-varying discrete delay and bounded distributed delay. By using the average dwell time approach and the discontinuous piecewise Lyapunov function technique, a novel delay-dependent sufficient condition for exponential stability of the switched neural networks with passivity is derived in terms of a set of linear matrix inequalities (LMIs). The obtained condition is not only dependent on the discrete delay bound, but also dependent on the distributed delay bound. A numerical example is given to demonstrate the effectiveness of the proposed result.  相似文献   

18.
Nagamani  G.  Adhira  B.  Soundararajan  G. 《Nonlinear dynamics》2021,104(1):451-466
Nonlinear Dynamics - This paper deals with the non-fragile state estimator design to study the robust extended dissipativity criterion for a class of discrete-time neural networks (DNNs) involving...  相似文献   

19.
Proportional delay, which is different from distributed delay, is a kind of unbounded delay. The proportional delay system as an important mathematical model often rises in some fields such as physics, biology systems, and control theory. In this paper, the uniqueness and the global asymptotic stability of equilibrium point of cellular neural networks with proportional delays are analyzed. By using matrix theory and constructing suitable Lyapunov functional, delay-dependent and delay-independent sufficient conditions are obtained for the global asymptotic stability of cellular neural networks with proportional delays. These results extend previous works on these issues for the delayed cellular neural networks. Two numerical examples and their simulation are given to illustrate the effectiveness of obtained results.  相似文献   

20.
This paper deals with the synchronization control problem for the uncertain chaotic neural networks with randomly occurring uncertainties and randomly occurring control gain fluctuations. By introducing an improved Lyapunov–Krasovskii functional and employing reciprocally convex approach, a delay-dependent non-fragile output feedback controller is designed to achieve synchronization with the help of a drive–response system and the linear matrix inequality approach. Finally, numerical results and its simulations are given to show the effectiveness of the derived results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号