首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Exploratory synthesis in the K–In–Ge–As system has yielded the unusual layered compounds K8In8Ge5As17(1) and K5In5Ge5As14(2), both of which contain In–Ge–As layers with interleaved potassium ions, Ge–Ge bonds, InAs4tetrahedra, As–As bonds, and rows of Ge2As6dimers. Compound 1 has As3groups, while compound 2 has infinite As ribbons on both faces of each layer. Unlike compound 1, compound 2 has substitutional defects where indium partially occupies each of the three independent germanium sites in the ratio of 1:5 for In:Ge. This partial occupancy makes 2 an electron-precise compound. The Ge(In)–Ge(In) bond of 2 is longer than the Ge–Ge bond of 1, and this bond lengthening effect was confirmed by performing DFT-MO calculations on the model compounds H3Ge–GeH3and H3Ge–InH3. Possible implications of electron imprecise formulas determined by X-ray crystal structure determinations are discussed. Compound 1: space groupP21/cwitha=18.394 (8) Å,b=19.087 (7) Å,c=25.360 (3) Å,β=105.71 (2)°,V=8571 (4) Å3, andDcalcd=4.45g/cm3forZ=4. Refinement on 4455 reflections yieldedR(Rw)=6.8%(7.8%). Compound 2: space groupC2/mwitha=40.00 (1) Å,b=3.925 (2) Å,c=10.299 (3),β=99.97 (2)°,V=1592 (1) Å3, andDcalcd= 4.55g/cm3forZ=8. Refinement on 1206 reflections yieldedR(Rw)=5.6% (5.7%).  相似文献   

2.
Six quaternary alkali-metal rare-earth copper tellurides K3Ln4Cu5Te10 (Ln=Sm, Gd, Er), Rb3Ln4Cu5Te10 (Ln=Nd, Gd), and Cs3Gd4Cu5Te10 have been synthesized at 1123 K with the use of reactive fluxes of alkali-metal halides ACl (A=K, Rb, Cs). All crystallographic data were collected at 153 K. These compounds crystallize in space group Pnnm of the orthorhombic system with two formula units in cells of dimensions (A3Ln4, a, b, c (Å)): K3Sm4, 16.590(2), 17.877(2), 4.3516(5); K3Gd4, 16.552(4), 17.767(4), 4.3294(9); K3Er4, 16.460(4), 17.550(4), 4.2926(9); Rb3Nd4, 17.356(1), 17.820(1), 4.3811(3); Rb3Gd4, 17.201(2), 17.586(2), 4.3429(6); Cs3Gd4, 17.512(1), 17.764(1), 4.3697(3). The corresponding R1 indices for the refined structures are 0.0346, 0.0315, 0.0212, 0.0268, 0.0289, and 0.0411. The three K3Ln4Cu5Te10 structures belong to one structure type and the Rb3Ln4Cu5Te10 (Ln=Nd, Gd) and Cs3Gd4Cu5Te10 structures belong to another one, the difference being the location of one of the three unique Cu atoms. Both structure types are three-dimensional tunnel structures that contain similar Ln/Te fragments built from LnTe6 octahedra and CuTe4 tetrahedra. The CuTe4 tetrahedra form 1[CuTe5−3] and 1[CuTe3−2] chains. The alkali-metal atoms, which are in the tunnels, are coordinated to seven or eight Te atoms.  相似文献   

3.
Single crystals of the new series Ln(OH)CrO4 (Ln = Y, Dy---Lu) have been obtained by hydrothermal procedures. The structure of Er(OH)CrO4 has been determined by single-crystal X-ray techniques. The compound has monoclinic symmetry, space group P21/n, Z = 8, with a = 8.106(3), B = 11.324(2), C = 8.251(1) Å, β = 94.14(2)° and V = 755.4(3) Å3. Final R values were R = 0.034, Rw = 0.049, for 2207 observed reflections. X-ray powder data show that all compounds of the title series are isomorphous. The coordination polyhedron of the lanthanide cations can be considered a square antiprism, with hydrogen bonds linking CrO4 and LnO8 groups. The X-ray data in this series provide evidence for the lanthanide contraction.  相似文献   

4.
Synthesis, structures, and magnetic properties of ternary rare earth oxides ALnO2 (A=Cu or Ag; Ln=rare earths) have been investigated. CuLnO2 (Ln=La, Pr, Nd, Sm, Eu) were synthesized by the direct solid state reaction of Cu2O and Ln2O3, and AgLnO2 (Ln=Tm, Yb, Lu) were obtained by the cation-exchange reaction of NaLnO2 and AgNO3 in a KNO3 flux. These compounds crystallized in the delafossite-type structure with the rhombohedral 3R type (space group: R-3m). Magnetic susceptibility measurements showed that these compounds are paramagnetic down to 1.8 K. Specific heat measurements down to 0.4 K indicated that CuNdO2 ordered antiferromagnetically at 0.8 K.  相似文献   

5.
Single crystals of new quaternary compounds Sr8Cu3In4N5 and Sr0.53Ba0.47CuN were prepared, respectively, from a Sr–Cu–In–Na melt under 7 MPa of N2 and from a Sr–Ba–Cu–In–Na melt under 0.5 MPa of N2 by slow cooling from 1023 to 823 K. The crystal structures were determined by single-crystal X-ray diffraction. Sr8Cu3In4N5 has an orthorhombic structure (space group, Immm, Z=2, a=3.8161(5) Å, b=12.437(2) Å, c=18.902(2) Å), and is isostructural with Ba8Cu3In4N5. It contains nitridocuprates of isolated units 0[CuN2] and one-dimensional linear chains 1[CuN2/2] and one-dimensional indium clusters 1[In2In2/2]. Sr0.53Ba0.47CuN crystallizes in an orthorhombic cell, space group Pbcm, Z=4, a=5.4763(7) Å, b=9.2274(12) Å, c=9.0772(12) Å. The structure contains infinite zig-zag chains 1[CuN2/2] which kink at every second nitrogen atom.  相似文献   

6.
Quaternary selenides Sn2Pb5Bi4Se13 and Sn8.65Pb0.35Bi4Se15 were synthesized from the elements in sealed silica tubes; their crystal structures were determined by single-crystal and powder X-ray diffraction. Both compounds crystallize in monoclinic space group C2/m (No.12), with lattice parameters of Sn2Pb5Bi4Se13: a = 14.001(6) Å, b = 4.234(2) Å, c = 23.471(8) Å, V = 1376.2(1) Å3, R1/wR2 = 0.0584/0.1477, and GOF = 1.023; Sn8.65Pb0.35Bi4Se15: a = 13.872(3) Å, b = 4.2021(8) (4) Å, c = 26.855(5) Å, V = 1557.1(5) Å3, R1/wR2 = 0.0506/0.1227, and GOF = 1.425. These compounds exhibit tropochemical cell-twinning of NaCl-type structures with lillianite homologous series L(4, 5) and L(4, 7) for Sn2Pb5Bi4Se13 and Sn8.65Pb0.35Bi4Se15, respectively. Measurements of electrical conductivity indicate that these materials are semiconductors with narrow band gaps; Sn2Pb5Bi4Se13 is n-type, whereas Sn8.65Pb0.35Bi4Se15 is a p-type semiconductor with Seebeck coefficients −80(5) and 178(7) μV/K at 300 K, respectively.  相似文献   

7.
Single crystals of a series of lanthanide lithium iridium oxides, Ln2LiIrO6 (Ln=La, Pr, Nd, Sm, Eu) with the double perovskite structure have been grown from molten LiOH/KOH fluxes. The compounds crystallize in a distorted 1:1 rock salt lattice of Li+ and Ir5+ cations in the monoclinic space group P21/n. The magnetic susceptibilities of Ln2LiIrO6 (Ln=Pr, Nd, Sm, Eu) are presented.  相似文献   

8.
Three rare earth compounds, KEu[AsS4] (1), K3Dy[AsS4]2 (2), and Rb4Nd0.67[AsS4]2 (3) have been synthesized employing the molten flux method. The reactions of A2S3 (A = K, Rb), Ln (Ln = Eu, Dy, Nd), As2S3, S were accomplished at 600 °C for 96 h in evacuated fused silica ampoules. Crystal data for these compounds are: 1, monoclinic, space group P21/m (no. 11), a = 6.7276(7) Å, b = 6.7190(5) Å, c = 8.6947(9) Å, β = 107.287(12)°, Z = 2; 2, monoclinic, space group C2/c (no. 15), a = 10.3381(7) Å, b = 18.7439(12) Å, c = 8.8185(6) Å, β = 117.060(7)°, Z = 4; 3, orthorhombic, space group Ibam (no. 72), a = 18.7333(15) Å, b = 9.1461(5) Å, c = 10.2060(6) Å, Z = 4. 1 is a two-dimensional structure with 2[Eu(AsS4)] layers separated by potassium cations. Within each layer, distorted bicapped trigonal [EuS8] prisms are linked through distorted [AsS4]3− tetrahedra. Each Eu2+ cation is coordinated by two [AsS4]3− units by edge-sharing and bonded to further two [AsS4]3− units by corner-sharing. Compound 2 contains a one-dimensional structure with 1[Dy(AsS4)2]3− chains separated by potassium cations. Within each chain, distorted bicapped trigonal prisms of [DyS8] are linked by slightly distorted [AsS4]3− tetrahedra. Each Dy3+ ion is surrounded by four [AsS4]3− moieties in an edge-sharing fashion. For compound 3 also a one-dimensional structure with 1[Nd0.67(AsS4)2]4− chains is observed. But the Nd position is only partially occupied and overall every third Nd atom is missing along the chain. This cuts the infinite chains into short dimers containing two bridging [As4]3− units and four terminal [AsS4]3− groups. 1 is characterized with UV/vis diffuse reflectance spectroscopy, IR, and Raman spectra.  相似文献   

9.
A new indium terbium germanate InTbGe2O7, which is a member of the thortveitite family, was prepared as a polycrystalline powder material by high-temperature solid-state reaction. This new compound crystallizes in the monoclinic system, space group C2/c (No. 15), with unit cell parameters a=6.8818(2) Å, b=8.8774(3) Å, c=9.7892(4) Å, β=101.401(1)°, V=586.25(4) Å3 and Z=4. Its structure was characterized by Rietveld refinement of powder laboratory X-ray diffraction data. It consists of octahedral sheets that are held together by sheets of isolated Ge2O7 diorthogroups composed of two tetrahedra sharing a common vertex. It contains only one octahedral site occupied by In3+ and Tb+3 cations. The characteristic mirror plane in the thortveitite (Sc2Si2O7) space group (C2/m, No. 12) is not present in this new compound. Besides, in InTbGe2O7, the Ge–O–Ge angle bridging two diorthogroups is 156.8(2)° as compared to the one in thortveitite, which is 180°. On the other hand, luminescent properties were observed when it is excited with 376.5 nm wavelength. The luminescence spectrum shows typical transitions from the 5D4 multiplet belonging to the trivalent terbium ion.  相似文献   

10.
Dy5Ni0.66Bi2.34 and Lu5Ni0.56Sb2.44 were synthesized by arc-melting and were found to adopt an orthorhombic Yb5Sb3-type structure. Cell parameters are a = 12.075(2), b = 9.165(2), c = 8.072(1) Å for Dy5Ni0.66Bi2.34 and a = 11.6187(9), b = 8.933(1) and c = 7.8377(6) Å for Lu5Ni0.56Sb2.44. Dy5Ni0.66Bi2.34 undergoes a step-like ferromagnetic transition around 66 K. Magnetocaloric effect in terms of the magnetic entropy change, ΔS, reaches −3.73 J/kg K at 75 K for Dy5Ni0.66Bi2.34.  相似文献   

11.
The compounds RbAuUSe3, CsAuUSe3, and RbAuUTe3 were synthesized at 1073 K from the reactions of U, Au, Q, and A2Q3 (A=Rb or Cs; Q=Se or Te). The compound CsAuUTe3 was synthesized at 1173 K from the reaction of U, Au, Te, and CsCl as a flux. These isostructural compounds crystallize in the KCuZrS3 structure type in space group Cmcm of the orthorhombic system. The structure consists of layers that contain nearly regular UQ6 octahedra and distorted AuQ4 tetrahedra. The infinite layers are separated by bicapped trigonal prismatic A cations. The magnetic behavior of RbAuUSe3 deviates significantly from Curie–Weiss behavior at low temperatures. For T>200 K, the values of the Curie constant C and the Weiss constant θp are 1.82(9) emu K mol−1 and −3.5(2)×102 K, respectively. The effective magnetic moment μeff is 3.81(9) μB. Formal oxidation states of A/Au/U/Q may be assigned as +1/+1/+4/−2, respectively.  相似文献   

12.
The crystal structures of 1,4-diazabicyclo[2.2.2]octane (dabco)-templated iron sulfate, (C6H14N2)[Fe(H2O)6](SO4)2, were determined at room temperature and at −173 °C from single-crystal X-ray diffraction. At 20 °C, it crystallises in the monoclinic symmetry, centrosymmetric space group P21/n, Z=2, a=7.964(5), b=9.100(5), c=12.065(5) Å, β=95.426(5)° and V=870.5(8) Å3. The structure consists of [Fe(H2O)6]2+ and disordered (C6H14N2)2+ cations and (SO4)2− anions connected together by an extensive three-dimensional H-bond network. The title compound undergoes a reversible phase transition of the first-order at −2.3 °C, characterized by DSC, dielectric measurement and optical observations, that suggests a relaxor–ferroelectric behavior. Below the transition temperature, the compound crystallizes in the monoclinic system, non-centrosymmetric space group Cc, with eight times the volume of the ambient phase: a=15.883(3), b=36.409(7), c=13.747(3) Å, β=120.2304(8)°, Z=16 and V=6868.7(2) Å3. The organic moiety is then fully ordered within a supramolecular structure. Thermodiffractometry and thermogravimetric analyses indicate that its decomposition proceeds through three stages giving rise to the iron oxide.  相似文献   

13.
We have prepared 14 new AABB′O6 perovskites which possess a rock salt ordering of the B-site cations and a layered ordering of the A-site cations. The compositions obtained are NaLnMnWO6 (Ln=Ce, Pr, Sm, Gd, Dy, and Ho) and NaLnMgWO6 (Ln=Ce, Pr, Sm, Eu, Gd, Tb, Dy, and Ho). The samples were structurally characterized by powder X-ray diffraction which has revealed metrically tetragonal lattice parameters for compositions with Ln=Ce, Pr and monoclinic symmetry for compositions with smaller lanthanides. Magnetic susceptibility vs. temperature measurements have found that all six NaLnMnWO6 compounds undergo antiferromagnetic ordering at temperatures between 10 and 13 K. Several compounds show signs of a second magnetic phase transition. One sample, NaPrMnWO6, appears to pass through at least three magnetic phase transitions within a narrow temperature range. All eight NaLnMgWO6 compounds remain paramagnetic down to 2 K revealing that the ordering of the Ln3+ cations in the NaLnMnWO6 compounds is induced by the ordering of the Mn2+ sub-lattice.  相似文献   

14.
Summary New complex salts of lanthanide thiocyanates with hexamethylenetetramine of the general formulaLn(NCS)3·2[N4(CH2)6·nH2O, whereLn=La,Pr,Nd,Sm,Gd,Dy,Er andn=0–10, have been analyzed. IR spectra have been obtained in the range of 200–4000 cm–1, frequencies of vibrations of low and high hydration state compounds have been analyzed, and differences between the structures of the coordination speheres of these salts are demonstrated. Diffractometric examinations and measurements of the magnetic susceptibility of several salts have been performed.
Synthese und spektroskopische, diffraktometrische und magnetische Untersuchungen von Verbindungen der Lanthaniden mit Rhodanid und Hexamethylentetramin
Zusammenfassung Neue Komplexsalze der Lanthaniden mit Rhodanid und Hexamethylentetramin mit der allgemeinen FormelLn(NCS)3·2[N4(CH2)6nH2O (Ln=La,Pr,Nd,Sm,Gd,Dy,Er;n=0–10) wurden untersucht. Die IR-Spektren der Verbindungen im Bereich von 200–4000 cm–1 wurden aufgenommen. Die Schwingungsfrequenzen hoch- und niederhydrierter Verbindungen wurden analysiert und die Unterschiede in der Struktur der Koordinationssphäre bestimmt. An einigen Komplexen wurden diffraktometrische Untersuchungen und Messungen der magnetischen Suzaptibilität durchgeführt.
  相似文献   

15.
A novel thioantimonate(III) [(CH3NH3)1.03K2.97]Sb12S20·1.34H2O was synthesized hydrothermally. It crystallizes in space groupP , witha=11.9939(7) Å,b=12.8790(8) Å,c=14.9695(9) Å,α=100.033(1)°,β=99.691(1)°,γ=108.582(1)°,V=2095.3(2) Å3, andZ=2. The structure is determined from single crystal X-ray diffraction data collected at room temperature and refined toR(F)=0.037. In the crystal structure, each Sb(III) atoms has short bonds (2.37–2.58 Å) to three S atoms. The pyramidal [SbS3] groups share common S atoms forming two types of centrosymmetric [Sb12S20] rings with the same topology. These rings are interconnected by weaker Sb–S bonds (2.92–3.29 Å) into 2-dimensional layers. Adjacent layers are parallel with K+and CH3NH+3ions and H2O molecules located between them. Variation of bond valence sums calculated for the Sb(III) cations is found to be correlated with the coordination geometry. This is interpreted as due to the stereochemical activity of their lone electron pairs.  相似文献   

16.
Two oxoborates, (Pb3O)2(BO3)2MO4 (M=Cr, Mo), have been prepared by solid-state reactions below 700 °C. Single-crystal XRD analyses showed that the Cr compound crystallizes in the orthorhombic group Pnma with a=6.4160(13) Å, b=11.635(2) Å, c=18.164(4) Å, Z=4 and the Mo analog in the group Cmcm with a=18.446(4) Å, b=6.3557(13) Å, c=11.657(2) Å, Z=4. Both compounds are characterized by one-dimensional chains formed by corner-sharing OPb4 tetrahedra. BO3 and CrO4 (MoO4) groups are located around the chains to hold them together via Pb–O bonds. The IR spectra further confirmed the presence of BO3 groups in both structures and UV–vis diffuse reflectance spectra showed band gaps of about 1.8 and 2.9 eV for the Cr and Mo compounds, respectively. Band structure calculations indicated that (Pb3O)2(BO3)2MoO4 is a direct semiconductor with the calculated energy gap of about 2.4 eV.  相似文献   

17.
The hydrothermal synthesis, single crystal structure, and some physical properties of Ba2(VO2)(PO4)(HPO4)·H2O, a new barium vanadium(V) phosphate hydrate, are reported. This phase is built up from one-dimensional chains of unusual VO5trigonal bipyramids and (H)PO4tetrahedra, fused together via V–O–P linkages. These anionic chains propagate along the polar [010] direction. 11-Coordinate barium cations and water molecules occupy the interchain regions and link the chains together. Structural data for this phase and other known barium vanadium phosphates are briefly compared. Crystal data: Ba2(VO2)(PO4)(HPO4)·H2O,Mr=566.57, monoclinic, space groupP21(No. 4),a=5.0772(5) Å,b=8.724(2) Å,c=10.806(1) Å,β=90.795(8)°,V=478.6(1) Å3,Z=2,R=2.65%,Rw=2.89% [147 parameters, 1893 observed reflections withI>3σ(I)].  相似文献   

18.
Single crystals of iron(II) pyroborate, Fe2B2O5, were prepared at 1000–1050 °C under an argon atmosphere. The crystals were transparent, yellowish in color and needle-like or columnar. The crystal structure of Fe2B2O5 was analyzed by single-crystal X-ray diffraction. Refined triclinic unit cell parameters were a=3.2388(2), b=6.1684(5), c=9.3866(8) Å, α=104.613(3)°, β=90.799(2)° and γ=91.731(2)°. The final reliability factors of refinement were R1=0.020 and wR2=0.059 [I > 2σ(I)]. Transmittance over 50% in the visible light region from 500 to 750 nm was observed for a single crystal of Fe2B2O5 with a thickness of about 0.3 mm. The light absorption edge estimated from a diffuse reflectance spectrum was at around 350 nm (3.6 eV). Magnetic susceptibility was measured for single crystals at 4–300 K. Fe2B2O5 showed antiferromagnetic behavior below the Néel temperature, TN≈70 K, and the Weiss temperature was TW=36 K. The effective magnetic moment of Fe was 5.3μB.  相似文献   

19.
Two novel polyoxometalate derivatives, {XIVWVI10WV2O40[Cu(en)2(H2O)]3} [X=V (1), Si (2); en=ethylenediamine], have been hydrothermally synthesized and characterized by elemental analyses, IR, UV–Vis, XPS, EPR, TG and single crystal X-ray diffraction analyses. They represent the first classical Keggin polyoxoanion supported by three transition metal complex moieties, which further act as the neutral molecular unit for the construction of the interesting three-dimensional supramolecular frameworks. The magnetic properties of 1 have also been studied in the temperature range of 4–300 K, and its magnetic susceptibility obeys the Curie–Weiss law, showing antiferromagnetic coupling.  相似文献   

20.
Crystals of Ln5Mo2O12 (Ln = Y, Gd) were grown by electrochemical reduction of alkali-molybdate/rare-earth oxide melts at 1075–1100°C. A single crystal of Y5Mo2O12, used for structure determination, was found to be monoclinic with a = 12.2376(7) Å, b = 5.7177(8) Å, c = 7.4835(5) Å, β = 108.034(5)°, and Z = 2. Although the structure was refined in space group C2/m, the true space group appears to be P21/m. In Y5Mo2O12, rutile-like sheets of edge-shared MoO6 chains linked by YO6 octahedra are interconnected with YO7 monocapped trigonal prisms. The Mo atoms in the chains have alternating distances of 2.496 and 3.221 Å and in that respect are similar to MoO2. However, in contrast to metallic MoO2 both the Y and Gd compounds are n-type semiconductors with room temperature resistivities of the order of 103 ohm-cm. Magnetic susceptibility measurements confirm the presence of one unpaired electron per Mo2 unit. The semiconducting behavior can be explained in terms of an unfavorable bridging oxygen coordination which prevents electron delocalization through metal-oxygen pi bonding as in MoO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号