首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The microscale morphology of micro machined component surfaces is directly connected to the heterogeneous microstructure. The deformation depends on the crystal structure, in case of the considered cp-titanium, the hcp crystal structure. In a first approach the crystal plastic deformation is modeled with isotropic hardening. A visco-plastic evolution law accounts for the rate dependency. The concept of configurational forces is used with the framework of crystal plasticity to model the cutting process of cp-titanium. The setting is implemented into the finite element method. The examples show the effect of the material heterogeneity on the deforamtion behavior and on the related configurational forces. (© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
In this work the mechanical boundary condition for the micro problem in a two-scaled homogenization using a FE2 approach is discussed. The strain tensor is often used in the literature for small deformation problem to determine the boundary conditions for the boundary value problem on the micro level. This strain tensor based boundary condition gives consistent homogenized mechanical quantities, e.g. stress tensor and elasticity tensor, but the present work points out that it leads to unphysical homogenized configurational forces. Instead, we propose a displacement gradient based boundary condition for the micro problem. Results show that the displacement gradient based boundary condition can give not only the consistent homogenized mechanical quantities but also the appropriate homogenized configurational forces. The interpretation of the displacement gradient based boundary condition is discussed. (© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
4.
We investigate aspects of the application of configurational forces in extended nonlocal continua with microstructure. Focussing on multifield approaches to gradient–type inelastic solids, the coupled problem is governed by the macroscopic deformation field, while nonlocal inelastic effects on the microstructure are described by a family of order parameter fields. The dual macro– and micro–field equations are derived within an incremental variational framework. Using an incremental principle, due to the variation with respect to the material position, an additional balance in the material space appears with the dual macro–micro–balances in the physical space. In view of the numerical implementation of this coupled problem by a finite element method, the incremental variational framework is recast into a discrete format in terms of discrete macro– and micro–physical nodal forces and configurational nodal forces. Applying a staggered solution scheme, the configurational branch is used as a postprocessing procedure with all the ingredients known from the solution of the coupled macro–micro–problem. The procedure is implemented for a nonlocal, viscous damage model. The consequences with regard to the configurational nodal forces are assessed by means of a numerical example. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
The damage process of metal-ceramic functionally graded material (FGM) is investigated. The microcrack evolution in a layered structure is analyzed using a numerical simulation of stresses and configurational forces. The modelling of an FGM of alumina ceramic and a metallic phase with gradually changing volume fraction of alumina is performed. A structure of two different layers bonded to a substrate is simulated. The stiffness and density of the three materials are varying. The evolution of configurational forces is simulated. The influence of the crack length on the crack driving force is studied for the case of a stress wave loading. The stress loading is applied in the horizontal direction as a dead load. (© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
The surface morphology of micro machined surfaces depends on the heterogeneous microstructure. A crystal plasticity model is used to describe the plastic deformation in cp-titanium with its hcp crystal structure. Therefore the basal and prismatic slip systems are taken into account. Furthermore, self and latent hardening are considered. The rate dependency is motivated by a visco plastic evolution law. The cutting process of cp-titanium is modeled within the concept of configurational forces for a standard dissipative media. This framework is implemented into the finite element method. An example illustrates the effects of the microstructure on plastic deformation and configurational forces. (© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
The micro cutting process of microstructured material is influenced by the heterogeneity of the microstructure. In case of cp-titanium an hcp crystal structure is present. Therefore the material response is described with elastic anisotropy and crystal plasticity with the prismatic and basal slip systems of cp-titanium. Also self and latent hardening are considered. The rate dependency is taken into account by a visco-plastic evolution law. In order to investigate a micro cutting process the concept of configurational forces for standard dissipative media is used. Within the finite element method an example illustrates the effects of the heterogeneity and the grain boundary on the configurational force. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
In the framework of numerical simulation, the analysis of fracture and damage mechanisms play an increasing role. In this context, the configurational force method is an useful tool for investigating structures with the finite element method [1] to predict the material behaviour more precisely. In this paper, we discuss the configurational forces in the context of high strain rate loaded hyperelastic structures [6]. Balance of momentum in the material space and the weak formulation are shown with focus on the explicite finite element method. Finally, an application will be presented based on a detailed treatment of structures subjected to short time loading. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
Ronny Behnke  Michael Kaliske 《PAMM》2012,12(1):299-300
Elastomers are widely used in today's life. The material is characterized by large deformability upon failure, elastic and time dependent as well as non-time dependent effects which can be also a function of temperature. In addition, cyclically loaded components show heat build-up which is due to dissipation. As a result, the temperature evolution of an elastomeric component can strongly influence the material properties and durability characteristics. Representing best the real thermo-mechanical behaviour of an elastomeric component in its design process is one motivation for the use of sophisticated, coupled material approaches within numerical simulations. In order to assess the durability characteristics, for example regarding crack propagation, material forces (configurational forces) are one possible approach to be applied. In the present contribution, the implementation of material forces for a thermo-mechanically coupled material model including a continuum mechanical damage (CMD) approach is demonstrated in the context of the Finite Element Method (FEM). Special emphasis is given to material forces resulting from internal variables (viscosity and damage variables), temperature field evolution and dynamic loading. Using the example of an elastomeric component, for which the material model parameters have been previously identified by a uniaxial extension test, material forces are evaluated quantitatively. The influence of each contribution (internal variables, temperature field and dynamics) is illustrated and compared to the overall material force response. (© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
D. Schrade  R. Müller  D. Gross 《PAMM》2006,6(1):455-456
The hindering of domain wall movement by defects in ferroelectric materials is closely connected to electric fatigue. A movable domain wall in a ferroelectric material in most cases is modelled as a singular surface which allows the use of configurational forces. In contrast, the present approach treats the polarization as an order parameter, extending the total energy by a phase separation energy and a domain wall energy. The polarization then no longer has a discontinuity at the domain wall but is a continuous vector field (phase field). As an example, a numerical simulation of domain evolution under stress free boundary conditions is presented. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
We introduce a consistent variational framework for inelasticity at finite strains, yielding dual balances in physical and material space as the Euler equations. The formulation is employed for the simultaneous usage of configurational forces as both driving forces for crack propagation as well as h-adaptive mesh refinement. The theoretical basis builds upon a global balance of internal and external power, where the mechanical response is exclusively governed by two scalar functions, the free energy function and a dissipation potential. The resulting variational structure is exploited in the context of fracture mechanics and yields evolution equations for internal variables. In the discrete setting, we present a geometry model fully separated from the finite element mesh structure that represents structural changes of the material configuration due to crack propagation. Advanced meshing algorithms provide an optimal discretization at the crack tip. Local and global criteria are obtained via error estimators based on configurational forces being interpreted as indicators of an energetic misfit due to an insufficient discretization. The numerical handling is decomposed into a staggered algorithm scheme for the dual set of equilibrium equations in material and physical space and efficient mesh generation tools. Exemplary numerical examples are considered to illustrate the method and to underline the effects of inelastic material behaviour in the presented context. (© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
A numerical scheme is presented to predict crack trajectories in two dimensional components. First a relation between the curvature in mixed–mode crack propagation and the corresponding configurational forces is derived, based on the principle of maximum dissipation. With the help of this, a numerical scheme is presented which is based on a predictor–corrector method using the configurational forces acting on the crack together with their derivatives along real and test paths. With the help of this scheme it is possible to take bigger than usual propagation steps, represented by splines. Essential for this approach is the correct numerical determination of the configurational forces acting on the crack tip. The methods used by other authors are shortly reviewed and an approach valid for arbitrary non–homogenous and non–linear materials with mixed–mode cracks is presented. Numerical examples show, that the method is a able to predict the crack paths in components with holes, stiffeners etc. with good accuracy. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
Numerous materials show a softening behaviour at dynamic loading. The decrease of stress is caused by the evolution in the microscale in terms of areas where the local stiffness is reduced, e.g. due to micro-void growth. For a numerical treatment of this material behaviour, phenomenological damage approaches are used in daily engineering practice. For a better understanding of the micromechanical process of such phenomenological models, multiscale methods are becoming increasingly important. The physical quantities that are responsible for the microstructural evolution associated with the damage process are transferred into the numerical model. In this context, the method of configurational forces will be used to describe the geometrical changes of damaged areas. With the help of homogenization, macro- and microscale will be coupled. In consequence, each Gaussian point of the macroscale is modelled by an own microstructure (RVE), where the microscale evolves during the loading process according to observable damage phenomena. Hereby, we present the general case of hyperelastic materials at finite strains. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
We study an initial boundary value problem of a model describing the evolution in time of diffusive phase interfaces in solid materials, in which martensitic phase transformations driven by configurational forces take place. The model was proposed earlier by the authors and consists of the partial differential equations of linear elasticity coupled to a nonlinear, degenerate parabolic equation of second order for an order parameter. In a previous paper global existence of weak solutions in one space dimension was proved under Dirichlet boundary conditions for the order parameter. Here we show that global solutions also exist for Neumann boundary conditions. Again, the method of proof is only valid in one space dimension.  相似文献   

15.
S. Kolling  D. Gross 《PAMM》2002,1(1):163-164
In micromechanical applications, the behaviour of material defects has been a great subject of interest. In this paper, the idea of Eshelby's energy momentum tensor is briefly reconsidered with respect to problems in solid mechanics. The derived configurational force balance is used to obtain the thermodynamic driving forces acting on centers of dilatation, dislocations, crack tips and interfaces of misfitting precipitates.  相似文献   

16.
Configurational forces can be interpreted as driving forces on material inhomogeneities such as crack tips. In dissipative media the total configurational force on an inhomogeneity consists of an elastic contribution and a contribution due to the dissipative processes in the material. For the computation of discrete configurational forces acting at the nodes of a finite element mesh, the elastic and dissipative contributions must be evaluated at integration point level. While the evaluation of the elastic contribution is straightforward, the evaluation of the dissipative part is faced with certain difficulties. This is because gradients of internal variables are necessary in order to compute the dissipative part of the configurational force. For the sake of efficiency, these internal variables are usually treated as local history data at integration point level in finite element (FE) implementations. Thus, the history data needs to be projected to the nodes of the FE mesh in order to compute the gradients by means of shape function interpolations of nodal data as it is standard practice. However, this is a rather cumbersome method which does not easily integrate into standard finite element frameworks. An alternative approach which facilitates the computation of gradients of local history data is investigated in this work. This approach is based on the definition of subelements within the elements of the FE mesh and allows for a straightforward integration of the configurational force computation into standard finite element software. The suitability and the numerical accuracy of different projection approaches and the subelement technique are discussed and analyzed exemplarily within the context of a crystal plasticity model. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
We study the free boundary problem describing the micro phase separation of diblock copolymer melts in the regime that one component has small volume fraction such that micro phase separation results in an ensemble of small balls of one component. Mean-field models for the evolution of a large ensemble of such spheres have been formally derived in Glasner and Choksi (Physica D, 238:1241–1255, 2009), Helmers et al. (Netw Heterog Media, 3(3):615–632, 2008). It turns out that on a time scale of the order of the average volume of the spheres, the evolution is dominated by coarsening and subsequent stabilization of the radii of the spheres, whereas migration becomes only relevant on a larger time scale. Starting from the free boundary problem restricted to balls we rigorously derive the mean-field equations in the early time regime. Our analysis is based on passing to the homogenization limit in the variational framework of a gradient flow.  相似文献   

18.
Peicheng Zhu 《PAMM》2005,5(1):637-638
This work is concerned with the models for phase evolution driven by configurational forces in alloys. We investigate mathematically the validity of the models for the non-conserved case and the conserved case, however only for the one space dimensional case. Those models were proposed by Prof. H.-D. Alber in a previous article. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
In this contribution the concept of configurational forces, also called material forces, is applied to rate–independent, elasto–plastic materials. The theory of configurational forces is briefly recast. Zones of plastic deformation can be interpreted as distributed inhomogeneities. With this background the theory of configurational forces can be applied in many situations, including plastic zones at crack tips, elastic inclusions in elasto–plastic materials and localized deformation. The numerical evaluation is done with the Finite Element Method. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
This contribution presents an approach based on the material force method which allows to evaluate the fracture sensitivity of rubber material. In order to account for the rate–independent dissipation of filled elastomers subjected to low rates, an endochronic plasticity formulation is introduced. It is shown how configurational forces under consideration of material body forces correspond with the elastic and dissipative energy and how they can be related to energy release rates measured in test configurations. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号