首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two new semiconducting polymers poly{4,8‐bis(4‐decylphenylethynyl)benzo[1,2‐b:4,5‐b′]difuran} ( P1 ) and poly {4,8‐bis(4‐decylphenylethynyl)benzo[1,2‐b:4,5‐b′]difuran‐alt‐4,8‐bis(4‐decylphenylethynyl)benzo[1,2‐b:4,5‐b′]dithiophene} ( P2 ) have been synthesized. These polymers were tested in bulk heterojunction solar cells yielding power conversion efficiencies of 1.19% for P1 and 0.79% for P2 . The surface morphology of the solar cell devices indicated that both the polymers display a granular morphology with smoother films displaying higher power conversion efficiencies. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

2.
This paper reviews our recent progress in determining the surface glass transition temperature, Tg, of free and substrate confined amorphous polymer films. We will introduce novel instrumental approaches and discuss surface and bulk concepts of Tg. The Tg of surfaces will be compared to the bulk, and we will discuss the effect of interfacial interactions (confinements), surface energy, disentanglement, adhesion forces, viscosity and structural changes on the glass transition. Measurements have been conducted with scanning force microscopy in two different shear modes: dynamic friction force mode and locally static shear modulation mode. The applicability of these two nano-contact modes to Tg will be discussed.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

3.
The effect of uniaxial deformation in partially and fully molten states on the morphology of crosslinked low-density polyethylene has been investigated. At low temperatures, the morphology is predominantly fibrillar, with little kebabs appearing on the fibril surfaces. As the deformation temperature is increased into the melting range, the shish density decreases, and overgrowths of kebabs on the fibrils concurrently increase in length. This gives rise to added twisting of the kebabs reflected in the orientation factor analysis. This shish/twisted lamellar kebab texture is observed only in a partially molten state. Studies in a substantially molten state indicate the absence of shish, althugh short lamellae are observed that are oriented in the transverse direction. This morphology indicates a high chain orientation factor as a result of short lamellae that exhibit small twisting similar to Matsumura's rod model. The absence of shishes in the final films stretched isothermally in a substantially molten stage agrees with Schultz's model, in which imperfectly formed shishes dissolve if they are not stabilized by rapid cooling, as is the case in these studies. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2228–2237, 2004  相似文献   

4.
应用原子力显微镜(atomic force microscopy,AFM)探测了静息、脂多糖(LPS)或伴刀豆蛋白(ConA)活化的人外周血淋巴细胞的形态结构、超微结构及粘滞力特性。从AFM图像可知,经LPS或ConA刺激活化后的淋巴细胞比静息状态的淋巴细胞有所增大,并且表面分布着大小不一的颗粒状聚合物。利用AFM高空间分辨的力位移曲线测量系统,发现经LPS或ConA刺激活化后淋巴细胞的粘滞力是静息状态淋巴细胞的2~3倍。通过AFM探测淋巴细胞活化状态的可视化数据,可以更好地理解淋巴细胞的行为。  相似文献   

5.
We have synthesized a blue-light-emitting polyfluorene derivative (PF-TPAOXD) that presents sterically hindered, dipolar pendent groups functionalized at the C-9 positions of alternating fluorene units. The incorporation of the dipolar side chains, each comprising an electron-rich triphenylamine group and an electron-deficient oxadiazole group connected through a π-conjugated bridge, endows the resultant polymer with higher highest occupied molecular orbital and lower lowest unoccupied molecular orbital energy levels, which, consequently, lead to an increase in both hole and electron affinities. An electroluminescent device incorporating this polymer as the emitting layer exhibited a stable blue emission with a maximum brightness of 2080 cd/m2 at 12 V and a maximum external quantum efficiency of 1.4% at a brightness of 137 cd/m2. Furthermore, atomic force microscopy measurements indicated that the dipolar nature of PF-TPAOXD, in contrast to the general nonpolarity of polydialkylfluorenes, provided a stabilizing environment allowing the polar organometallic triplet dopant to be dispersed homogeneously. We also fabricated an electrophosphorescent device incorporating PF-TPAOXD as the host material doped with a red-emitting osmium complex to realize red electroluminescence with Commission Internationale de l'Eclairage color coordinates of (0.66, 0.34). The resulting device exhibited a maximum external quantum efficiency of 7.3% at a brightness of 1747 cd/m2 and a maximum brightness of 7244 cd/m2. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2073–2084, 2007  相似文献   

6.
The goal of this research is to quantify the fibrillar adhesive energy in ultra‐high molecular weight polyethylene fibers, characteristic of nanoscale fibril interactions. Quantification of these energies is vital to the understanding of fibrillar deformation mechanisms that have been shown to play an important role in fiber performance. This is achieved through the development and implementation of a nanosplitting technique developed through the use of AFM‐enabled nanoindentation. This technique allows the quantification of nanoscale adhesive energies through careful monitoring of load and unload curves as well as examination of the residual split through high‐resolution AFM images. Results indicate that the average nanoscale fibril adhesive energy is over 3 times larger than the energy expected from van der Waals interactions alone. This indicates that a significant degree of physical interactions exist between fibrils, beyond van der Waals interactions, in the form of tie‐molecules, fibrillar network junctions, and bridging lamellar crystals. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 391–401  相似文献   

7.
A magnetically active, purely organic dot array was formed by the selective deposition of polyradical nanoparticles on array‐like‐formed pits on a silicon substrate. The nanometer‐sized polyradical particles, poly(4‐methacryoyloxy‐2,2,6,6‐tetramethylpiperidine‐1‐oxyl), were prepared by the emulsion polymerization of 4‐methacryloyloxy‐2,2,6,6‐tetramethylpiperidine‐1‐acetoxyl followed by a deprotection reaction and oxidation in air. The size (diameter) and radical spin concentration of the polyradical nanoparticles were tunable between the polymerization and oxidation conditions. Electrochemical studies revealed the redox property of the polyradical nanoparticles. The magnetic response image of the polyradical nanoparticles was obtained by magnetic force microscopy, reflecting their radical spin concentrations. These results suggested a possible approach for the use of organic polyradical nanoparticles as organic magnetic dot arrays. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 521–530, 2007  相似文献   

8.
We fabricated a micrometer‐long supramolecular chain in which π‐conjugated polyrotaxane was coupled. A new experimental setup was designed and constructed, and the simultaneous direct imaging of the structure and fluorescent function was achieved. Furthermore, we identified the formation of a polymer intertwined network and observed novel fluorescence due to a long‐range interaction via this intertwined network over a distance of 5 μm or more without quenching over 15 min in the near field. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 801–809, 2006  相似文献   

9.
The thermal and crystal morphological properties of poly[ethylene teraphthalate] (PET) and poly(ethylene-2,6-naphthalenedicarboxylate) (PEN) biaxially oriented films were compared to amorphous and other isotropic semi-crystalline samples. Crystal melting as a function of temperature was characterized by temperature modulated DSC (TMDSC) and found to begin just above the glass transition for both oriented films. About 75°C above the glass transitions, substantial exothermic recrystallization begins and continues through the final melting region in oriented films. The maximum in the non-reversing TMDSC signal for the oriented films signifies the maximum recrystallization exothermic activity with peaks at 248°C and 258°C for PET and PEN, respectively. The final melting endotherm detected was 260°C and 270°C for PET and PEN, and is shown by the TMDSC data and by independent rapid heating rate melting point determinations to be due to the melting of species recrystallized during the heating scan. The results are compared with TMDSC data for initially amorphous and melt crystallized samples. The volume fraction of rigid species (Frigid=total crystal fraction plus rigid amorphous or non-crystalline species) were measured by TMDSC glass transition data, and contrasted with the area fraction of rigid species at the oriented film surface characterized with very high resolution atomic force microscopy (AFM) phase data. The data suggest that the 11 nm wide hard domains in PET, and 21 nm wide domains in PEN film detected by AFM consist of both crystal and high stiffness interphase species.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

10.
The six‐armed polystyrenes and poly(methyl methacrylate)s with a triphenylene core showed different self‐assembling patterns, isolated cylinders for polySt on mica and highly ordered cylindrical pores for polyMMA on a silicon wafer. With a decrease of polymer concentration in tetrahydrofuran (THF), the size and height of cylinders decreased for polySt, but for polyMMA, the size and depth of the cylindrical pores increased. Slow evaporation of the solvent and a low molecular weight favored the formation of regular patterns.

AFM images of self‐assembling patterns of polySt 1a on mica (A) and of polyMMA 2a on silicon wafer (B).  相似文献   


11.
Semiconductor quantum dots (QDs) can be used as alternative for transition metal complexes to harvest the nonemissive triplet excitons in organic light‐emitting diodes (OLEDs). In search for a QD‐based OLED material generating blue emission, poly(9‐vinylcarbazole) (PVK) and poly(9‐(2,3‐epoxypropyl) carbazole) (PEPK) are chosen as host for blue‐emitting CdSe/ZnS core/shell QDs. The QDs are encapsulated with 16‐(N‐carbazolyl) hexadecanoic acid (C16), a ligand terminated by a carbazole moiety. As alternative for PVK, PEPK, where the lower molecular weight and less extensive excimer formation could promise a better film formation and more extensive exciton hopping, is explored. The efficiencies of singlet ( ) and triplet ( ) energy transfer to the C16 capped QDs are estimated by combining stationary photoluminescence spectra and fluorescence decays of pristine polymer films with those of polymer films doped with the QDs. At a loading of 30 wt % of the QDs, increases from 12 ± 1% in PVK to 41 ± 2% in PEPK while increases from 37 ± 22% in PVK to 72 ± 48% in PEPK. The investigation of the film morphology by atomic force microscopy confirms that the main factor limiting the triplet transfer efficiency in the PVK matrix is the clustering of the C16 capped QDs. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 539–551  相似文献   

12.
A poly(p‐phenylenevinylene) derivative bearing conjugated side chains (polyCPV) was synthesized by Migita‐Kosugi‐Stille type coupling polycondensation reaction. This polymer contains phenylenevinylene units in both the main chain and the side chains. UV–vis absorption and fluorescence emission spectroscopies revealed a well‐developed π‐conjugation of the polyCPV. The absorption band of the polymer was extended to long wavelengths. A fluorescent emission maximum of polyCPV is located at considerably longer wavelengths than that of the conjugated side chain monomer. Electron spin resonance measurements of polyCPV confirmed generation of charge species in both the main chain and the side chains via iodine doping. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

13.
Poly(ethylene oxide) and poly[bis[2-(2′-methoxyethoxy) ethoxy] phosphazene], PEO/MEEP, polymer blends were investigated by thermal analysis, X-ray diffraction, and atomic force microscopy. MEEP is an amorphous polymer and its semicrystalline blends with PEO showed two distinct glass transitions, whose composition dependence was analysed by the Lodge and McLeish self-concentration model. It appears that an amorphous miscible phase is present in these blends. Excess melting enthalpy was observed for blends with high MEEP concentration. PEO lamellar characteristics exhibited changes as a function of MEEP content, both in X-ray patterns and AFM images that indicated the intercalation of MEEP side chains in the lamellar crystalline structure.  相似文献   

14.
脱乙酰基对天然魔芋葡甘聚糖分子形貌的影响   总被引:11,自引:0,他引:11  
通过原子力显微镜直接观察魔芋葡甘聚糖(KGM)分子的三维结构形貌,KGM水溶液铺展在经Ca^2 处理的云母片上,干燥固定后,可获得稳定,重复的图像,实验结果表明,稀溶液中KGM分子具有伸展的螺旋链状结构,单股的长度达200-400nm,厚度为1.0nm,宽度为35.0-35.2nm,脱乙酰后分子链卷曲成直径约40-50nm,厚3.5-5.0nm的弹性圆台状。  相似文献   

15.
Summary: Nanometer scale morphological order of macroscopically amorphous polyesters, obtained from the melt at moderate cooling rates, was observed in the past. The effect of such order on mechanical properties of a PET/PEN blend, evaluated by AFM nanoindentations, is reported in this study. Results show that nanoindentations conducted at relatively high load, with penetration depths of the order of 100 nm, confirm the information obtained from mechanical tests at micrometer scale, i.e., microhardness. On the other hand, true nanometer scale indentations (<40 nm) are seen to discriminate between the mechanical properties of the nanophases formed during solidification.

Statistical distribution of elastic moduli observed after 60 nanoindentations performed at 1 µN on each sample solidified at the cooling rates reported in the legend.  相似文献   


16.
Novel poly(arylene ether ketone) polymers with fluorophenyl pendants and phenoxide‐terminated wholly sulfonated poly(arylene ether sulfone) oligomers are prepared via Ni(0)‐catalyzed and nucleophilic polymerization, respectively, and subsequently used as starting materials to obtain graft‐crosslinked membranes as polymer electrolyte membranes. The phenoxide‐terminated sulfonated moieties are introduced as hydrophilic parts as well as crosslinking units. The chemical structure and morphology of the obtained membranes are confirmed by 1H NMR and tapping‐mode AFM. The properties required for fuel cell applications, including water uptake and dimensional change, as well as proton conductivity, are investigated. AFM results show a clear nanoscale phase‐separation microstructure of the obtained membranes. The membranes show good dimensional stability and reasonably high proton conductivities under 30–90% relative humidity. The anisotropic proton conductivity ratios (σ⟂/||) of the membranes in water are in the range 0.65–0.92, and increase with an increase in hydrophilic block length. The results indicate that the graft‐crosslinked membranes are promising candidates for applications as polymer electrolyte membranes.

  相似文献   


17.
18.
Polymer brushes of water‐soluble polymers, poly(2‐hydroxyethyl acrylate) (PHEA) and poly(poly(oxyethyleneglycol)methylether acrylate) (PPEGA), were synthesized on a silicon wafer and a silica particle by applying photo‐induced organotellurium‐mediated radical polymerization to surface‐initiated graft polymerization. High graft densities were obtained, corresponding to reduced graft densities of about 0.32 and 0.42 for the PHEA and PPEGA brushes, respectively. These values were high enough to be categorized in the regime of “concentrated” polymer brushes (CPBs). Atomic force microscopic (AFM) study revealed that the CPB of PPEGA was allowed to be highly swollen in water but the CPB of PHEA did not. This means that water is reasonably good for PPEGA but not for PHEA. The AFM microtribological study between swollen brushes revealed two lubrication regimes, namely, boundary‐ and hydrodynamic‐lubrication regimes, with different shear‐velocity dependencies. Reflecting insufficient quality of water as a solvent, the CPB of PHEA showed adhesive interaction and thereby a higher frictional coefficient μ in the boundary lubrication. More interestingly, super lubrication was achieved for the CPB of PPEGA with a μ value in the order of 10?4 in water and in 0.1 M aqueous NaCl solution (without the help of electrostatic repulsion). Super lubrication was concluded to be a characteristic feature of the CPB, even in an aqueous system. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

19.
Four novel two‐dimensional (2D) donor–acceptor (D‐A) type copolymers with different conjugated side chains, P1 , P2 , P3 , and P4 (see Fig. 1 ), are designed and synthesized for the application as donor materials in polymer solar cells (PSCs). To the best of our knowledge, there were few reports to systematically study such 2D polymers with D‐A type main chains in this area. The optical energy band gaps are about 2.0 eV for P1 – P3 and 1.67 eV for P4 . PSC devices using P1 – P4 as donor and [6,6]‐phenyl‐C61‐butyric acid methyl ester as acceptor in a weight ratio of 1:3 were fabricated and characterized to investigate the photovoltaic properties of the polymers. Under AM 1.5 G, 100 mA/cm2 illumination, a high open‐circuit voltage (Voc) of 0.9 V was recorded for P3 ‐based device due to its low HOMO level, and moderate fill factor was obtained with the best value of 58.6% for P4 ‐based device, which may mainly be the result of the high hole mobility of the polymers (up to 1.82 × 10?3 cm2/V s). © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

20.
The interplay between the chemical structure of the precursors, internal organization in the end materials and dye retention was investigated for composites (ormosils) doped with rhodamine B. Besides formulations with triethoxysilanes (RTES) only, we synthesized as well organic–inorganic hybrids with addition of titanium isopropoxide (TIP) and maleic anhydride (MA). The organic (R) functionality of RTES was changed from methyl (MeTES), to phenyl (PTES) and octyl (OTES). Atomic force microscopy and electron microscopy, coupled with thermogravimetric analysis prove that hydrophobicity increase stimulates the transition of film structure: from well-defined, compact particles (for MeTES), to a mixture of porous particles and non-granular material (for MeTES/PTES), with extreme results observed for octyl-based composites. For this latter, the apparent homogeneity comes from cluster-like organization, where the primary entities are pseudo—granules produced by hydrophobic interactions of oligomeric siloxanes. Controlling the composition and gelation procedure resulted in doped composites with good optical transparency and rhodamine B fluorescence emission bands at around 580 nm. Dye transport inside the inorganic structure is not facilitated when: (a) the particles have a compact (nonporous) inner structure and (b) the recipe does not contain the TIP/MA combination. For silica-based films, the dye is located in the macropores (between the granules) of the material and could be easy removed by washing with acetone. On the contrary, using TIP/MA changes not only the internal composition of the granular-like material (by creating a microporous titania-rich outer-shell of the particles) but also the affinity of the Rh-B to permeate and reside inside these new structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号