首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study mean-square consistency, stability in the mean-square sense and mean-square convergence of drift-implicit linear multi-step methods with variable step-size for the approximation of the solution of Itô stochastic differential equations. We obtain conditions that depend on the step-size ratios and that ensure mean-square convergence for the special case of adaptive two-step-Maruyama schemes. Further, in the case of small noise we develop a local error analysis with respect to the hh–εε approach and we construct some stochastic linear multi-step methods with variable step-size that have order 2 behaviour if the noise is small enough.  相似文献   

2.
We derive the estimates of numerically stable step-size for systems of neutral delay-differential equations (NDDEs), which only need to be calculated the spectral radius of the corresponding matrices. The stable step-size for numerical integration of NDDEs can be easily selected by means of the estimates. The stability regions of both linear multistep methods and explicit Runge-Kutta methods are presented.  相似文献   

3.
A variable stepsize control algorithm for solution of stochastic differential equations (SDEs) with a small noise parameter ?? is presented. In order to determine the optimal stepsize for each stage of the algorithm, an estimate of the global error is introduced based on the local error of the Stochastic Runge?CKutta Maruyama (SRKM) methods. Based on the relation of the stepsize and the small noise parameter, the local mean-square stochastic convergence order can be different from stage to stage. Using this relation, a strategy for producing and controlling the stepsize in the numerical integration of SDEs is proposed. Numerical experiments on several standard SDEs with small noise are presented to illustrate the effectiveness of this approach.  相似文献   

4.
We derive two estimations of numerically stable step-size for systems of neutral delay differential equations with multiple delays. The stable step-size for numerical integration of NDDEs with multiple delays can be easily selected by means of the logarithmic norm and the spectral radius of certain matrices. Both explicit linear multistep methods and explicit Runge-Kutta methods are considered.  相似文献   

5.
In this paper, the mean-square stability of second-order Runge–Kutta schemes for multi-dimensional linear stochastic differential systems is studied. Motivated by the work of Tocino [Mean-square stability of second-order Runge–Kutta methods for stochastic differential equations, J. Comput. Appl. Math. 175 (2005) 355–367] and Saito and Mitsui [Mean-square stability of numerical schemes for stochastic differential systems, in: International Conference on SCIentific Computation and Differential Equations, July 29–August 3 2001, Vancouver, British Columbia, Canada] we investigate the mean-square stability of second-order Runge–Kutta schemes for multi-dimensional linear stochastic differential systems with one multiplicative noise. Stability criteria are established and numerical examples that confirm the theoretical results are also presented.  相似文献   

6.
In this article we present results of a linear stability analysis of stochastic linear multi-step methods for stochastic ordinary differential equations. As in deterministic numerical analysis we use a linear time-invariant test equation and study when the numerical approximation shares asymptotic properties in the mean-square sense of the exact solution of that test equation. Sufficient conditions for asymptotic mean-square stability of stochastic linear two-step-Maruyama methods are obtained with the aide of Lyapunov-type functionals. In particular we study the asymptotic mean-square stability of stochastic counterparts of two-step Adams-Bashforth- and Adams-Moulton-methods and the BDF method. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
Thorsten Sickenberger  Renate Winkler 《PAMM》2007,7(1):4050023-4050024
We consider the simulation of noisy electronic circuits with oscillatory solutions. For their transient noise simulation we use variable step-size two-step schemes for stochastic differential-algebraic equations. The performance of these methods in combination with a suitable step-size control strategy is illustrated by an industrial test application. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
In this paper, we present two families of second-order and third-order explicit methods for numerical integration of initial-value problems of ordinary differential equations. Firstly, a family of second-order methods with two free parameters is derived by considering a suitable rational approximation to the theoretical solution of the problem at some grid points. Imposing that the principal term of the local truncation error of this family vanishes, we obtain an expression for one of the parameters in terms of the other. With this approach, a new one-parameter family of third-order methods is obtained. By selecting any 3(2) pair of second and third order methods, they can be implemented as an embedded type method, thus leading to a variable step-size formulation. We have considered one 3(2) pair of second and third order methods and made a comparison of numerical results with several ode solvers which are currently used in practice. The comparison of numerical results shows that the embedded 3(2) pair outperforms the methods considered for comparison.  相似文献   

9.
We consider the mean-square stability of the so-called improved split-step theta method for stochastic differential equations. First, we study the mean-square stability of the method for linear test equations with real parameters. When θ 3/2, the improved split-step theta methods can reproduce the mean-square stability of the linear test equations for any step sizes h 0. Then, under a coupled condition on the drift and diffusion coefficients, we consider exponential mean-square stability of the method for nonlinear non-autonomous stochastic differential equations. Finally, the obtained results are supported by numerical experiments.  相似文献   

10.
In this paper a family of fully implicit Milstein methods are introduced for solving stiff stochastic differential equations (SDEs). It is proved that the methods are convergent with strong order 1.0 for a class of SDEs. For a linear scalar test equation with multiplicative noise terms, mean-square and almost sure asymptotic stability of the methods are also investigated. We combine analytical and numerical techniques to get insights into the stability properties. The fully implicit methods are shown to be superior to those of the corresponding semi-implicit methods in term of stability property. Finally, numerical results are reported to illustrate the convergence and stability results.  相似文献   

11.
The class of stochastic Runge–Kutta methods for stochastic differential equations due to Rößler is considered. Coefficient families of diagonally drift-implicit stochastic Runge–Kutta (DDISRK) methods of weak order one and two are calculated. Their asymptotic stability as well as mean-square stability (MS-stability) properties are studied for a linear stochastic test equation with multiplicative noise. The stability functions for the DDISRK methods are determined and their domains of stability are compared to the corresponding domain of stability of the considered test equation. Stability regions are presented for various coefficients of the families of DDISRK methods in order to determine step size restrictions such that the numerical approximation reproduces the characteristics of the solution process.  相似文献   

12.
We develop new, higher-order numerical one-step methods and apply them to several examples to investigate approximate discrete solutions of nonlinear differential equations. These new algorithms are derived from the Adomian decomposition method (ADM) and the Rach-Adomian-Meyers modified decomposition method (MDM) to present an alternative to such classic schemes as the explicit Runge-Kutta methods for engineering models, which require high accuracy with low computational costs for repetitive simulations in contrast to a one-size-fits-all philosophy. This new approach incorporates the notion of analytic continuation, which extends the region of convergence without resort to other techniques that are also used to accelerate the rate of convergence such as the diagonal Padé approximants or the iterated Shanks transforms. Hence global solutions instead of only local solutions are directly realized albeit in a discretized representation. We observe that one of the difficulties in applying explicit Runge-Kutta one-step methods is that there is no general procedure to generate higher-order numeric methods. It becomes a time-consuming, tedious endeavor to generate higher-order explicit Runge-Kutta formulas, because it is constrained by the traditional Picard formalism as used to represent nonlinear differential equations. The ADM and the MDM rely instead upon Adomian’s representation and the Adomian polynomials to permit a straightforward universal procedure to generate higher-order numeric methods at will such as a 12th-order or 24th-order one-step method, if need be. Another key advantage is that we can easily estimate the maximum step-size prior to computing data sets representing the discretized solution, because we can approximate the radius of convergence from the solution approximants unlike the Runge-Kutta approach with its intrinsic linearization between computed data points. We propose new variable step-size, variable order and variable step-size, variable order algorithms for automatic step-size control to increase the computational efficiency and reduce the computational costs even further for critical engineering models.  相似文献   

13.

This paper deals with numerical solutions of nonlinear stiff stochastic differential equations with jump-diffusion and piecewise continuous arguments. By combining compensated split-step methods and balanced methods, a class of compensated split-step balanced (CSSB) methods are suggested for solving the equations. Based on the one-sided Lipschitz condition and local Lipschitz condition, a strong convergence criterion of CSSB methods is derived. It is proved under some suitable conditions that the numerical solutions produced by CSSB methods can preserve the mean-square exponential stability of the corresponding analytical solutions. Several numerical examples are presented to illustrate the obtained theoretical results and the effectiveness of CSSB methods. Moreover, in order to show the computational advantage of CSSB methods, we also give a numerical comparison with the adapted split-step backward Euler methods with or without compensation and tamed explicit methods.

  相似文献   

14.
A new implicit integration method is presented which can efficiently be applied in the solution of (stiff) differential equations. The given formulas are of a modified implicit Runge-Kutta type and areA-stable. They may containA-stable embedded methods for error estimation and step-size control.  相似文献   

15.
We study the pathwise (strong) approximation of scalar stochastic differential equations with respect to the global error in the -norm. For equations with additive noise we establish a sharp lower error bound in the class of arbitrary methods that use a fixed number of observations of the driving Brownian motion. As a consequence, higher order methods do not exist if the global error is analyzed. We introduce an adaptive step-size control for the Euler scheme which performs asymptotically optimally. In particular, the new method is more efficient than an equidistant discretization. This superiority is confirmed in simulation experiments for equations with additive noise, as well as for general scalar equations.

  相似文献   


16.
讨论了一类带分数Brown运动时变随机种群收获系统数值解的均方散逸性.在一定条件下,利用It公式和Bellman-Gronwall-Type引理,研究了方程(1)具有均方散逸性.分别利用带补偿的倒向Euler方法和分步倒向Euler方法讨论数值解的均方散逸性存在的充分条件,并通过数值算例对所给出的结论进行了验证.  相似文献   

17.
本文讨论一般非线性随机延迟微分方程Heun方法的数值稳定性,证明了如果问题本身满足零解是均方指数稳定和均方渐近稳定的充分条件,则当方程的漂移项进一步满足一定的条件时,Heun方法是Ms.稳定的,带线性插值的Heun方法是均方指数稳定的和GMS-稳定的理论结果.文末的数值试验进一步验证了所得的相关结论.  相似文献   

18.
Linear multistep methods (LMMs) applied to approximate the solution of initial value problems—typically arising from method-of-lines semidiscretizations of partial differential equations—are often required to have certain monotonicity or boundedness properties (e.g., strong-stability-preserving, total-variation-diminishing or total-variation-boundedness properties). These properties can be guaranteed by imposing step-size restrictions on the methods. To qualitatively describe the step-size restrictions, one introduces the concept of step-size coefficient for monotonicity (SCM, also referred to as the strong-stability-preserving (SSP) coefficient) or its generalization, the step-size coefficient for boundedness (SCB). An LMM with larger SCM or SCB is more efficient, and the computation of the maximum SCM for a particular LMM is now straightforward. However, it is more challenging to decide whether a positive SCB exists, or determine if a given positive number is a SCB. Theorems involving sign conditions on certain linear recursions associated to the LMM have been proposed in the literature that allow us to answer the above questions: the difficulty with these theorems is that there are in general infinitely many sign conditions to be verified. In this work, we present methods to rigorously check the sign conditions. As an illustration, we confirm some recent numerical investigations concerning the existence of positive SCBs in the BDF and in the extrapolated BDF (EBDF) families. As a stronger result, we determine the optimal values of the SCBs as exact algebraic numbers in the BDF family (with 1 ≤ k ≤ 6 steps) and in the Adams–Bashforth family (with 1 ≤ k ≤ 3 steps).  相似文献   

19.
In this paper, we concentrate on the numerical approximation of solutions of stochastic delay integro-differential equations with Markovian switching (SDIDEsMS). We establish the split-step backward Euler (SSBE) scheme for solving linear SDIDEsMS and discuss its convergence and stability. Moreover, the SSBE method is convergent with strong order γ = 1/2 in the mean-square sense. The conditions under which the SSBE method is mean-square stable and general mean-square stable are obtained. Some illustrative numerical examples are presented to demonstrate the stability of the numerical method and show that SSBE method is superior to Euler method.  相似文献   

20.
Motivated by the superlinear behavior of the Barzilai-Borwein (BB) method for two-dimensional quadratics, we propose two gradient methods which adaptively choose a small step-size or a large step-size at each iteration. The small step-size is primarily used to induce a favorable descent direction for the next iteration, while the large step-size is primarily used to produce a sufficient reduction. Although the new algorithms are still linearly convergent in the quadratic case, numerical experiments on some typical test problems indicate that they compare favorably with the BB method and some other efficient gradient methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号