首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Numerical methods are proposed for the numerical solution of a system of reaction-diffusion equations, which model chemical wave propagation. The reaction terms in this system of partial differential equations contain nonlinear expressions. Nevertheless, it is seen that the numerical solution is obtained by solving a linear algebraic system at each time step, as opposed to solving a nonlinear algebraic system, which is often required when integrating nonlinear partial differential equations. The development of each numerical method is made in the light of experience gained in solving the system of ordinary differential equations, which model the well-stirred analogue of the chemical system. The first-order numerical methods proposed for the solution of this initialvalue problem are characterized to be implicit. However, in each case it is seen that the numerical solution is obtained explicitly. In a series of numerical experiments, in which the ordinary differential equations are solved first of all, it is seen that the proposed methods have superior stability properties to those of the well-known, first-order, Euler method to which they are compared. Incorporating the proposed methods into the numerical solution of the partial differential equations is seen to lead to two economical and reliable methods, one sequential and one parallel, for solving the travelling-wave problem. © 1994 John Wiley & Sons, Inc.  相似文献   

2.
In this article, a new numerical approach has been proposed for solving a class of delay time-fractional partial differential equations. The approximate solutions of these equations are considered as linear combinations of Müntz–Legendre polynomials with unknown coefficients. Operational matrix of fractional differentiation is provided to accelerate computations of the proposed method. Using Padé approximation and two-sided Laplace transformations, the mentioned delay fractional partial differential equations will be transformed to a sequence of fractional partial differential equations without delay. The localization process is based on the space-time collocation in some appropriate points to reduce the fractional partial differential equations into the associated system of algebraic equations which can be solved by some robust iterative solvers. Some numerical examples are also given to confirm the accuracy of the presented numerical scheme. Our results approved decisive preference of the Müntz–Legendre polynomials with respect to the Legendre polynomials.  相似文献   

3.
A boundary value problem is examined for a linear differential algebraic system of partial differential equations with a special structure of the associate matrix pencil. The use of an appropriate transformation makes it possible to split such a system into a system of ordinary differential equations, a hyperbolic system, and a linear algebraic system. A three-layer finite difference method is applied to solve the resulting problem numerically. A theorem on the stability and the convergence of this method is proved, and some numerical results are presented.  相似文献   

4.
In this paper the Charpit system of partial differential equations with algebraic constraints is considered. So, first the compatibility conditions of a system of algebraic equations and also of the Charpit system of partial differential equations are separately considered. For the combined system of equations of both types sufficient conditions for the existence of a solution are found. They lead to an algorithm for reducing the combined system to a Charpit system of partial differential equations of dimension less than the initial system and without algebraic constraints. Moreover, it is proved that this system identically satisfies the compatibility conditions if so does the initial system.  相似文献   

5.
In this paper, a numerical solution of fractional partial differential equations (FPDEs) for electromagnetic waves in dielectric media will be discussed. For the solution of FPDEs, we developed a numerical collocation method using an algorithm based on two‐dimensional shifted Legendre polynomials approximation, which is proposed for electromagnetic waves in dielectric media. By implementing the partial Riemann–Liouville fractional derivative operators, two‐dimensional shifted Legendre polynomials approximation and its operational matrix along with collocation method are used to convert FPDEs first into weakly singular fractional partial integro‐differential equations and then converted weakly singular fractional partial integro‐differential equations into system of algebraic equation. Some results concerning the convergence analysis and error analysis are obtained. Illustrative examples are included to demonstrate the validity and applicability of the technique. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

6.
Roland Pulch  Bernd Kugelmann 《PAMM》2015,15(1):615-616
A dynamical system including frequency modulated signals can be transformed into multirate partial differential algebraic equations. Optimal solutions are determined by a necessary condition. A method of lines yields a semi-discretisation in the case of initial-boundary value problems. We show that the resulting system can be written in a standard formulation of differential algebraic equations. Hence appropriate time integration schemes are available for a numerical solution. We present results for a test example modelling the electric circuit of a ring oscillator. (© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
The aim of this paper is to present an efficient numerical procedure for solving the two-dimensional nonlinear Volterra integro-differential equations (2-DNVIDE) by two-dimensional differential transform method (2-DDTM). The technique that we used is the differential transform method, which is based on Taylor series expansion. Using the differential transform, 2-DNVIDE can be transformed to algebraic equations, and the resulting algebraic equations are called iterative equations. New theorems for the transformation of integrals and partial differential equations are introduced and proved. The reliability and efficiency of the proposed scheme are demonstrated by some numerical experiments.  相似文献   

8.
In this paper, we study the numerical solution to time‐fractional partial differential equations with variable coefficients that involve temporal Caputo derivative. A spectral method based on Gegenbauer polynomials is taken for approximating the solution of the given time‐fractional partial differential equation in time and a collocation method in space. The suggested method reduces this type of equation to the solution of a linear algebraic system. Finally, some numerical examples are presented to illustrate the efficiency and accuracy of the proposed method. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
A method for solving systems of linear algebraic equations arising in connection with the approximation of boundary value problems for elliptic partial differential equations is proposed. This method belongs to the class of conjugate directions method applied to a preliminary transformed system of equations. A model example is used to explain the idea underlying this method and to investigate it. Results of numerical experiments that confirm the method’s efficiency are discussed.  相似文献   

10.
In this paper, an efficient and accurate numerical method is presented for solving two types of fractional partial differential equations. The fractional derivative is described in the Caputo sense. Our approach is based on Bernoulli wavelets collocation techniques together with the fractional integral operator, described in the Riemann‐Liouville sense. The main characteristic behind this approach is to reduce such problems to those of solving systems of algebraic equations, which greatly simplifies the problem. By using Newton's iterative method, this system is solved and the solution of fractional partial differential equations is achieved. Some results concerning the error analysis are obtained. The validity and applicability of the method are demonstrated by solving four numerical examples. Numerical examples are presented in the form of tables and graphs to make comparisons with the results obtained by other methods and with the exact solutions much easier.  相似文献   

11.
A new BDF‐type scheme is proposed for the numerical integration of the system of ordinary differential equations that arises in the Method of Lines solution of time‐dependent partial differential equations. This system is usually stiff, so it is desirable for the numerical method to solve it to have good properties concerning stability. The method proposed in this article is almost L‐stable and of algebraic order three. Numerical experiments illustrate the performance of the new method on different stiff systems of ODEs after discretizing in the space variable some PDE problems. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2007  相似文献   

12.
In the current study, an approximate scheme is established for solving the fractional partial differential equations (FPDEs) with Volterra integral terms via two‐dimensional block‐pulse functions (2D‐BPFs). According to the definitions and properties of 2D‐BPFs, the original problem is transformed into a system of linear algebra equations. By dispersing the unknown variables for these algebraic equations, the numerical solutions can be obtained. Besides, the proof of the convergence of this system is given. Finally, several numerical experiments are presented to test the feasibility and effectiveness of the proposed method.  相似文献   

13.
In this study, we present a numerical scheme for solving a class of fractional partial differential equations. First, we introduce psi -Laguerre polynomials like psi-shifted Chebyshev polynomials and employ these newly introduced polynomials for the solution of space-time fractional differential equations. In our approach, we project these polynomials to develop operational matrices of fractional integration. The use of these orthogonal polynomials converts the problem under consideration into a system of algebraic equations. The solution of this system provide us the desired results. The convergence of the proposed method is analyzed. Finally, some illustrative examples are included to observe the validity and applicability of the proposed method.  相似文献   

14.
The numerical solution of systems of partial differential and algebraic equations (PDAEs) is strictly related to a property of the system, the index, whose definition and role are discussed in this paper. The notion of algebraic index is reviewed and compared to the more general notion of perturbation index. Extensions to nonlinear PDAEs are also proposed. Reference is then made to the case of a flexible mechanical system (an inextensible cable), whose model is formulated in three different, yet dynamically equivalent, ways, with different properties with respect to the feasibility of an accurate numerical integration. The methodology used in this analysis is finally formalized in an algorithm for index reduction.  相似文献   

15.
Some physical problems in science and engineering are modelled by the parabolic partial differential equations with nonlocal boundary specifications. In this paper, a numerical method which employs the Bernstein polynomials basis is implemented to give the approximate solution of a parabolic partial differential equation with boundary integral conditions. The properties of Bernstein polynomials, and the operational matrices for integration, differentiation and the product are introduced and are utilized to reduce the solution of the given parabolic partial differential equation to the solution of algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the new technique.  相似文献   

16.
In this paper, we propose a new numerical algorithm for solving linear and non linear fractional differential equations based on our newly constructed integer order and fractional order generalized hat functions operational matrices of integration. The linear and nonlinear fractional order differential equations are transformed into a system of algebraic equations by these matrices and these algebraic equations are solved through known computational methods. Further some numerical examples are given to illustrate and establish the accuracy and reliability of the proposed algorithm. The results obtained, using the scheme presented here, are in full agreement with the analytical solutions and numerical results presented elsewhere.  相似文献   

17.
In this paper, we have shown that the numerical method of lines can be used effectively to solve time dependent combustion models in one spatial dimension. By the numerical method of lines (NMOL), we mean the reduction of a system of partial differential equations to a system of ordinary differential equations (ODE's), followed by the solution of this ODE system with an appropriate ODE solver. We used finite differences for the spatial discretization and a variant of the GEAR package for the ODE's.We have presented various solution methods of interest for the nonlinear algebraic system in this setting; that is, in the corrector iteration section of the GEAR package applied to combustion models. These methods include Newton/block SOR (SOR denotes successive over-relaxation), block SOR/Newton, Newton/block-diagonal Jacobian, Newton/kinetics-only Jacobian, and Newton/block symmetric SOR. These methods have in common their lack of frequent use in ODE software and their eady applicability to partial differential equations in more than one spatial dimension.Finally, we have given the results of numerical tests, run on the CDC-7600 and Cray-1 computers. By so doing, we indicate the more promising nonlinear system solvers for the NMOL solution of combustion models.  相似文献   

18.
In this paper, an effective numerical approach based on a new two‐dimensional hybrid of parabolic and block‐pulse functions (2D‐PBPFs) is presented for solving nonlinear partial quadratic integro‐differential equations of fractional order. Our approach is based on 2D‐PBPFs operational matrix method together with the fractional integral operator, described in the Riemann–Liouville sense. The main characteristic behind this approach is to reduce such problems to those of solving systems of algebraic equations, which greatly simplifies the problem. By using Newton's iterative method, this system is solved, and the solution of fractional nonlinear partial quadratic integro‐differential equations is achieved. Convergence analysis and an error estimate associated with the proposed method is obtained, and it is proved that the numerical convergence order of the suggested numerical method is O(h3) . The validity and applicability of the method are demonstrated by solving three numerical examples. Numerical examples are presented in the form of tables and graphs to make comparisons with the exact solutions much easier.  相似文献   

19.
In this article, a new method is presented for the solution of high‐order linear partial differential equations (PDEs) with variable coefficients under the most general conditions. The method is based on the approximation by the truncated double Chebyshev series. PDE and conditions are transformed into the matrix equations, which corresponds to a system of linear algebraic equations with the unknown Chebyshev coefficients, via Chebyshev collocation points. Combining these matrix equations and then solving the system yields the Chebyshev coefficients of the solution function. Some numerical results are included to demonstrate the validity and applicability of the method. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

20.
We consider a boundary value problem for a linear partial differential-algebraic system with a special structure of the matrix pencil, which permits one to split the system by an appropriate transformation into a system of ordinary differential equations, a hyperbolic system, and a linear algebraic system. For the numerical solution of such problems, we use a three-layer method. We prove the theorem on the stability and convergence of the suggested numerical method. The results of numerical experiments are presented as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号