首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Some novel cobalt diphenylphosphine complexes were synthesized by reacting cobalt(II) chloride with (2-methoxyethyl)diphenylphosphine, (2-methoxyphenyl)diphenylphosphine, and 2-(1,1-dimethylpropyl)-6-(diphenylphosphino)pyridine. Single crystals suitable for X-ray diffraction studies were obtained for the first two complexes, and their crystal structure was determined. The novel compounds were then used in association with methylaluminoxane (MAO) for the polymerization of 1,3-butadiene, and their behavior was compared with that exhibited in the polymerization of the same monomer by the systems CoCl2(PnPrPh2)2/MAO and CoCl2(PPh3)2/MAO. Some significant differences were observed depending on the MAO/Co ratio used, and a plausible interpretation for such a different behavior is proposed.  相似文献   

2.
The effect of two initiators, so-called dual initiators system on atom radical transfer polymerization (ATRP), were studied with dimethyl-2,6-dibromohepanedioate (DMDBHD) and ethyl-2-bromoisobutyrate (EBIB). Cu(I)Br as catalyst and N,N,N??,N??,N??-pentamethyl-diethylenetriamine as ligand were employed for styrene ATRP. Interestingly, bimodal MWD were shown for the dual initiator system, and one of the peaks had higher molecular weight (MW) and the other had lower MW compared to a one-initiator system. The lower MW peak in bimodal peaks seemed to be mainly resulting from EBIB and the higher MW peak from DMDBHD. Furthermore, methylaluminoxane (MAO) was fed into the ATRP reaction to observe the effect of it on ATRP. As the MAO/CuBr molar ratio in feed increased from 0 to 1, the molecular weight and conversion increased without a notable change in PDI and curve shape of GPC. The conversion in the presence of MAO was also increased with the increase in MAO/CuBr molar ratio. The effect of Cp*TiCl3 on the ATRP was opposite to that of MAO. As the Cp*TiCl3/CuBr molar ratio increased from 0 to 1, the conversion of polymerization was down from 56 to 35%. Furthermore, the molecular weight was drastically decreased from 10,000 to 5,500, but their PDI did not show a significant change. These results can elucidated by the retarding effect of Cp*TiCl3 on the propagation of polymerization.  相似文献   

3.
Summary: We previously discovered that structurally well-defined polymer/inorganic composite particles, i.e., poly(methyl methacrylate) (PMMA)/CaCO3/SiO2 three-component composite particles, can be achieved via reverse atom transfer radical polymerization (ATRP), using 2,2′-azo-bis-isobutyronitrile as initiator and CuII bromide as catalyst. In the present study, the influence of the mass ratio of CaCO3/SiO2 two-component composite particles to methyl methacrylate (MMA) on the rate and behavior of the polymerization was studied in detail. The results illustrate that increasing the mass ratio of CaCO3/SiO2 two-component composite particles will decrease the overall rate of polymerization of MMA under standard reverse ATRP conditions. Thermal properties of the obtained well-defined particles were characterized and determined by thermogravimetric analysis (TGA). The results indicate that well-defined PMMA chains grafted on the surface of CaCO3/SiO2 particles were only degraded by random chain scission of C C linkages within the PMMA chain, which is different from the degradation of PMMA chains prepared via traditional radical polymerization. This difference is reasonably ascribed to the difference between the end groups of PMMA prepared via reverse ATRP and that via traditional radical polymerization, which has been confirmed by end group analysis measured by 1H–NMR spectroscopy.  相似文献   

4.
A novel tetrafunctional initiator, C [CH_2O (CH_2)_3 OOCCH(Br)CH_3]_4 (1), was synthesized through the reaction oftetraol with α-bromopropionyl chloride, and then was used as initiator of atom transfer radical polymerization (ATRP) in thepreparation of 4-armed polystyrene (PSt) with narrow polydispersity. The structure, molecular weight and molecular weightdistribution (MWD) of each arm were studied by ~1H-NMR and GPC data of hydrolyzed products of the 4-armed PSt. TheATRP of St using 1/CuBr/bpy as initiator system is of "living" character based on the following evidence: narrow MWD,constant concentration of chain radical during the polymerization, control of molecular weight by the molar ratio of monomerconsumed to 1. The 4-armed poly(St-b-p-nitrophenyl methacrylate) [poly(St-b-NPMA)] was prepared by the ATRP ofNPMA using 4-armed PSt with terminal bromine as the initiator, and characterized by FT-IR, ~1H-NMR spectra and GPCcurves. The micelles with PSt as core, and PNPMA as shell were formed by dropping DMSO into a solution of 4-armedpoly(St-b-NPMA) in DMF, as proved by laser light scatter (LLS) method.  相似文献   

5.
Racemic-anti-[ethylidene(1-η5-tetramethylcyclopentadienyl) (1-η5-indenyl)dimethyltitanium ( 6 ) has been synthesized and its molecular structure determined by x-ray diffraction methods. The two Ti?Me(1) and Ti?Me(2) units have bond distances differing by 0.08 Å and their proton NMR resonances are separated by over 1 ppm. Using this compound and methylaluminoxane (MAO) as the activator, at 25°C the 6 /MAO catalyst produced polypropylene having crystalline domain with physical crosslinks. The polymers obtained at lower polymerization temperatures are rheologically liquids. The behaviors of this catalyst system resembles closely the previously reported rac-[anti-ethylidene(1-η5-tetramethylcyclopentadienyl) (1-η5-indenyl)dichlorotitanium ( 4 )/MAO system. The structure of 6 determined here furnishes tangible support for the proposed two-state (isomeric)-switching propagation mechanism. Addition of MAO to 6 causes broadening of the Me(1) resonance in the 1H-NMR spectra, and 6 is decomposed by Ph3C+B(C6F5)-4. © 1992 John Wiley & Sons, Inc.  相似文献   

6.
Block copolymers based on poly(vinylidene fluoride), PVDF, and a series of poly(aromatic sulfonate) sequences were synthesized from controlled radical polymerizations (CRPs). According to the aromatic monomers, appropriate techniques of CRP were chosen: either iodine transfer polymerization (ITP) or atom transfer radical polymerization (ATRP) from PVDF‐I macromolecular chain transfer agents (CTAs) or PVDF‐CCl3 macroinitiator, respectively. These precursors were produced either by ITP of VDF with C6F13I or by radical telomerization of VDF with chloroform, respectively. Poly(vinylidene fluoride)‐b‐poly(sodium styrene sulfonate), PVDF‐b‐PSSS, block copolymers were produced from both techniques via a direct polymerization of sodium styrene sulfonate (SSS) monomer or an indirect way with the use of styrene sulfonate ethyl ester (SSE) as a protected monomer. Although the reaction led to block copolymers, the kinetics of ITP of SSS showed that PVDF‐I macromolecular CTAs were not totally efficient because a limitation of the CTA consumption (56%) was observed. This was probably explained by both the low activity of the CTA (that contained inefficient PVDF‐CF2CH2? I) and a fast propagation rate of the monomer. That behavior was also noted in the ITP of SSE. On the other hand, ATRP of SSS initiated by PVDF‐CCl3 was more controlled up to 50% of conversion leading to PVDF‐b‐PSSS block copolymer with an average number molar mass of 6000 g·mol?1. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

7.
Novel amphiphilic A14B7 multimiktoarm star copolymers composed of 14 poly(ε‐caprolactone) (PCL) arms and 7 poly(acrylic acid) (PAA) arms with β‐cyclodextrin (β‐CD) as core moiety were synthesized by the combination of controlled ring‐opening polymerization (CROP) and atom transfer radical polymerization (ATRP). 14‐Arm star PCL homopolymers (CDSi‐SPCL) were first synthesized by the CROP of CL using per‐6‐(tert‐butyldimethylsilyl)‐β‐CD as the multifunctional initiator in the presence of Sn(Oct)2 at 125 °C. Subsequently, the hydroxyl end groups of CDSi‐SPCL were blocked by acetyl chloride. After desilylation of the tert‐butyldimethylsilyl ether groups from the β‐CD core, 7 ATRP initiating sites were introduced by treating with 2‐bromoisobutyryl bromide, which further initiated ATRP of tert‐butyl acrylate (tBA) to prepare well‐defined A14B7 multimiktoarm star copolymers [CDS(PCL‐PtBA)]. Their molecular structures and physical properties were in detail characterized by 1H NMR, SEC‐MALLS, and DSC. The selective hydrolysis of tert‐butyl ester groups of the PtBA block gave the amphiphilic A14B7 multimiktoarm star copolymers [CDS(PCL‐PAA)]. These amphiphilic copolymers could self‐assemble into multimorphological aggregates in aqueous solution, which were characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM) and atomic force microscopy (AFM). © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2961–2974, 2010  相似文献   

8.
The amphiphilic A2B star‐shaped copolymers of polystyrene‐b‐[poly(ethylene oxide)]2 (PS‐b‐PEO2) were synthesized via the combination of atom transfer nitroxide radical coupling (ATNRC) with ring‐opening polymerization (ROP) and atom transfer radical polymerization (ATRP) mechanisms. First, a novel V‐shaped 2,2,6,6‐tetramethylpiperidine‐1‐oxyl‐PEO2 (TEMPO‐PEO2) with a TEMPO group at middle chain was obtained by ROP of ethylene oxdie monomers using 4‐(2,3‐dihydroxypropoxy)‐TEMPO and diphenylmethyl potassium as coinitiator. Then, the linear PS with a bromine end group (PS‐Br) was obtained by ATRP of styrene monomers using ethyl 2‐bromoisobutyrate as initiator. Finally, the copolymers of PS‐b‐PEO2 were obtained by ATNRC between the TEMPO and bromide groups on TEMPO‐PEO2 and PS‐Br, respectively. The structures of target copolymers and their precursors were all well‐defined by gel permeation chromatographic and nuclear magnetic resonance (1H NMR). © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

9.
The graft copolymers composed of “Y”‐shaped polystyrene‐b‐poly(ethylene oxide)2 (PS‐b‐PEO2) as side chains and hyperbranched poly(glycerol) (HPG) as core were synthesized by a combination of “click” chemistry and atom transfer radical polymerization (ATRP) via “graft from” and “graft onto” strategies. Firstly, macroinitiators HPG‐Br were obtained by esterification of hydroxyl groups on HPG with bromoisobutyryl bromide, and then by “graft from” strategy, graft copolymers HPG‐g‐(PS‐Br) were synthesized by ATRP of St and further HPG‐g‐(PS‐N3) were prepared by azidation with NaN3. Then, the precursors (Bz‐PEO)2‐alkyne with a single alkyne group at the junction point and an inert benzyl group at each end was synthesized by sequentially ring‐opening polymerization (ROP) of EO using 3‐[(1‐ethoxyethyl)‐ethoxyethyl]‐1,2‐propanediol (EEPD) and diphenylmethylpotassium (DPMK) as coinitiator, termination of living polymeric species by benzyl bromide, recovery of protected hydroxyl groups by HCl and modification by propargyl bromide. Finally, the “click” chemistry was conducted between HPG‐g‐(PS‐N3) and (Bz‐PEO)2‐alkyne in the presence of N,N,N′,N″,N”‐pentamethyl diethylenetriamine (PMDETA)/CuBr system by “graft onto” strategy, and the graft copolymers were characterized by SEC, 1H NMR and FTIR in details. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

10.
The functionalization of monomer units in the form of macroinitiators in an orthogonal fashion yields more predictable macromolecular architectures and complex polymers. Therefore, a new ‐shaped amphiphilic block copolymer, (PMMA)2–PEO–(PS)2–PEO–(PMMA)2 [where PMMA is poly(methyl methacrylate), PEO is poly (ethylene oxide), and PS is polystyrene], has been designed and successfully synthesized by the combination of atom transfer radical polymerization (ATRP) and living anionic polymerization. The synthesis of meso‐2,3‐dibromosuccinic acid acetate/diethylene glycol was used to initiate the polymerization of styrene via ATRP to yield linear (HO)2–PS2 with two active hydroxyl groups by living anionic polymerization via diphenylmethylpotassium to initiate the polymerization of ethylene oxide. Afterwards, the synthesized miktoarm‐4 amphiphilic block copolymer, (HO–PEO)2–PS2, was esterified with 2,2‐dichloroacetyl chloride to form a macroinitiator that initiated the polymerization of methyl methacrylate via ATRP to prepare the ‐shaped amphiphilic block copolymer. The polymers were characterized with gel permeation chromatography and 1H NMR spectroscopy. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 147–156, 2007  相似文献   

11.
Various novel block cationomers consisting of polyisobutylene (PIB) and poly[2‐(dimethylamino)ethyl methacrylate] (PDMAEMA) segments were synthesized and characterized. The specific targets were various molecular weight diblocks (PIB‐b‐PDMAEMA+) and triblocks (PDMAEMA+b‐PIB‐b‐PDMAEMA+), with the PIB blocks in the DPn = 50–200 range (number‐average molecular weight = 3,000–9000 g/mol) connected to blocks of PDMAEMA+ cations in the DPn = 5–20 range (where DP is the number‐average degree of polymerization). The overall synthetic strategy for the preparation of these block cationomers had four steps: (1) synthesis by living cationic polymerization of mono‐ and diallyltelechelic polyisobutylenes, (2) end‐group transformation to obtain PIBs fitted with termini capable of mediating the atom transfer radical polymerization (ATRP) of DMAEMA, (3) ATRP of DMAEMA, and (4) quaternization of PDMAEMA to PDMAEMA +I? by CH3I. Scheme 1 shows the microarchitecture and outlines the synthesis route. Kinetic and model experiments provided guidance for developing convenient synthesis methods. The microarchitecture of PIB–PDMAEMA di‐ and triblocks and the corresponding block cationomers were confirmed by 1H NMR and FTIR spectroscopy and solubility studies. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3679–3691, 2002  相似文献   

12.
Methyl methacrylate was polymerized with Cp2YCl(THF) or IVB group metallocene compounds (i.e., Cp2ZrCl2 and Cp2HfCl2, etc.), in the presence of a Lewis acid like Zn(C2H5)2. The Lewis acid was complexed with methyl methacrylate, which avoided the metallocene compounds being poisoned with a functional group. A living polymerization was promoted through the use of metallocene/MAO/Zn(C2H5)2, which gave tactic poly(methyl methacrylate) with a high molecular weight. The polymer yield increases with polymerization time, which indicates that the propagation rate is zero in order in the concentration of the monomer. The polymer yield increases also with the concentration of Cp2YCl(THF), which indicates the yttrocene to be the real catalyst. When the polymerization temperature exceeds room temperature, the poly(methyl methacrylate) cannot be synthesized by the Cp2YCl(THF) catalyst. When the reaction temperature reachs −60 °C, the poly(methyl methacrylate) is high syndiotatic and molecular weight by the Cp2YCl(THF)/MAO catalyst system. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1184–1194, 2000  相似文献   

13.
Novel, unique amphiphilic pentablock terpolymers consisting of the highly hydrophobic polyisobutylene (PIB) mid-segment attached to the hydrophilic combshaped poly(poly(ethylene glycol) methacrylate) (PPEGMA) polymacromonomer chains, which are coupled to poly(methyl methacrylate) (PMMA) outer segments were synthesized by the combination of quasiliving carbocationic polymerization and atom transfer radical polymerization (ATRP). First, a bifunctional PIB macroinitiator was prepared by quasiliving carbocationic polymerization and subsequent quantitative chain end derivatizations. Quasiliving ATRP of PEGMAs with different molecular weights (Mn = 188, 300 and 475 g/mol) led to triblock copolymers which were further reacted with MMA under ATRP conditions to obtain PMMA-PPEGMA-PIB-PPEGMA-PMMA ABCBA-type pentablock copolymers. It was found that slow initiation takes place between the PIB macroinitiator and PEGMA macromonomers with higher molecular weights via ATRP. ATRP of MMA with the resulting block copolymers composed of PIB and PPEGMA chain segments led to the desired block copolymers with high initiating efficiency. Investigations of the resulting pentablock copolymers by DSC, SAXS and phase mode AFM revealed that nanophase separation occurs in these new macromolecular structures with average domain distances of 11-14 nm, and local lamellar self-assembly takes place in the pentablocks with PPEGMA polymacromonomer segments of PEGMAs with Mn of 118 g/mol and 300 g/mol, while disordered nanophases are observed in the block copolymer with PEGMA having molecular weight of 475 g/mol. These new amphiphilic block copolymers composed of biocompatible chain segments can find applications in a variety of advanced fields.  相似文献   

14.
The present report describes the synthesis of a densely grafted copolymer consisting of a rigid main chain and flexible side chains by the atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) from an ATRP initiator‐bearing poly(phenylacetylene) [poly(BrPA)]. Poly(BrPA) was obtained by the polymerization of 4‐ethynylbenzyl‐2‐bromoisobutyrate using [Rh(NBD)Cl]2 in the presence of Et3N. The 1H NMR spectrum showed that poly(BrPA) was in the cis‐transoid form. Upon heating at 30 °C for 24 h the cis‐transoid form was maintained. ATRP of MMA from the poly(BrPA) was carried out at 30 °C using CuX (X = Br, Cl) as the catalyst and N,N,N′,N′,N′‐pentamethyldiethylenetriamine as the ligand, and the resulting graft copolymers were investigated with 1H NMR and SEC. To analyze the graft structure in more detail, the graft copolymers were hydrolyzed with KOH and the resultant poly(MMA) part was investigated with 1H NMR and SEC. The polydispersity indexes of 1.25–1.45 indicated that the graft copolymers have well‐controlled side chains. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6697–6707, 2006  相似文献   

15.
New, water soluble poly(glycidol) (PGl) macroinitiators for atom transfer radical polymerization (ATRP) were synthesized. This new class of macroinitiators were prepared in a three‐step process. First, series of well‐defined ω‐hydroxyl functional poly(glycidol acetal)s with different molecular weights was synthesized via anionic polymerization followed by quantitative termination of anionically growing active sites. End capping was achieved by treatment of living chain ends with water. The living nature of the system and termination reaction is discussed. In the second stage, monofunctional poly(glycidol acetal)s were functionalized by esterification with 2‐chloropropionyl chloride. Finally, selective deprotection (hydrolysis) of acetal protective groups was performed. As simultaneous partial cleavage of ester bond of attached ATRP moieties was unavoidable, the final functionality of macroinitiator calculated from 1H NMR varied in the range 85–95%. The obtained (2‐chloropropionyl) poly(glycidol) macroinitiator with DP = 55 and 90% functionality was successfully used in ATRP polymerization of N‐isopropylacrylamide (NIPAAm) at room temperature in the DMF/water mixture. Linear block copolymers with relatively narrow molecular weight distribution and controlled composition were obtained and characterized with 1H NMR and SEC‐MALLS measurements. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2488–2499, 2008  相似文献   

16.
Summary: Controlled polymerization of N‐isopropylacrylamide (NIPAAM) was achieved by atom transfer radical polymerization (ATRP) using ethyl 2‐chloropropionate (ECP) as initiator and CuCl/tris(2‐dimethylaminoethyl)amine (Me6TREN) as a catalytic system. The polymerization was carried out in DMF:water 50:50 (v/v) mixed solvent at 20 °C. The first order kinetic plot was linear up to 92% conversion. Controlled molecular weights up to 2.2 × 104 and low polydispersities (1.19) were obtained. The living character of the polymerization was also demonstrated by self‐blocking experiments. Block copolymers with N,N‐dimethylacrylamide (DMAAM) and 3‐sulfopropyl methacrylate (SPMA) were successfully prepared.

Molecular weights and polydispersities of polyNIPAAM versus NIPAAM conversion for two different degrees of polymerization.  相似文献   


17.
Well‐defined trifluoromethylated poly(phenylene oxide)s were synthesized via nucleophilic aromatic substitution (SNAr) reaction by a chain‐growth polymerization manner. Polymerization of potassium 4‐fluoro‐3‐(trifluoromethyl)phenolate in the presence of an appropriate initiator yielded polymers with molecular weights of ~4000 and polydispersity indices of <1.2, which were characterized by 1H nuclear magnetic resonance spectroscopy and gel permeation chromatography. Initiating sites for atom transfer radical polymerization (ATRP) were introduced at the either side of chain ends of the poly(phenylene oxide), and used for ATRP of styrene and methyl methacrylate, yielding well‐defined rod‐coil block copolymers. Differential scanning calorimetry study indicated that the well‐defined trifluoromethylated poly(phenylene oxide)s showed high crystallinity and were immiscible with polystyrene. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1049–1057, 2010  相似文献   

18.
ABA block copolymers of methyl methacrylate and methylphenylsilane were synthesized with a methodology based on atom transfer radical polymerization (ATRP). The reaction of samples of α,ω‐dihalopoly(methylphenylsilane) with 2‐hydroxyethyl‐2‐methyl‐2‐bromoproprionate gave suitable macroinitiators for the ATRP of methyl methacrylate. The latter procedure was carried out at 95 °C in a xylene solution with CuBr and 2,2‐bipyridine as the initiating system. The rate of the polymerization was first‐order with respect to monomer conversion. The block copolymers were characterized with 1H NMR and 13C NMR spectroscopy and size exclusion chromatography, and differential scanning calorimetry was used to obtain preliminary evidence of phase separation in the copolymer products. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 30–40, 2003  相似文献   

19.
This report describes propylene polymerization reactions with titanium complexes bearing carbamato ligands, Ti(O2CNMe2)Cl2 ( I ) and Ti(O2CR2)4 [R2 = NMe2 ( II ), NEt2 ( III ) and ( IV )]. Combinations of these complexes and MAO form catalysts for the synthesis of atactic polypropylene, as confirmed by FT‐IR, DSC and 13C NMR analysis. Effects of main reaction parameters on the catalyst activity were studied including the type of complex, solvent, temperature, and the [Al]/[Ti] molar ratio. The highest activity was observed when chlorobenzene was used as a solvent and AlMe3‐depleted MAO was employed as a cocatalyst. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4095–4102  相似文献   

20.
The application of atom transfer radical polymerization (ATRP) to the homopolymerization of 2-hydroxyethyl acrylate, a functional monomer, is reported. The polymerizations exhibit first-order kinetics, and molecular weights increase linearly with conversion. Polydispersities remain low throughout the polymerization (Mw/Mn ≈ 1.2). Reactions were conducted in bulk and in 1 : 1 (by volume) aqueous solution; the latter demonstrates the resilience of ATRP to protic media. Analysis of poly(2-hydroxyethyl acrylate) by MALDI-MS and 1H-NMR shows Mn,exp to be much closer to Mn,th than those observed by SEC using polystyrene standards. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1417–1424, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号