首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structure of unvulcanized and dynamically vulcanized blends of isotactic PP with ethylene-propylene-diene terpolymer (EPDM) having an EPDM content of 5–85 wt % was studied by means of atomic force microscopy. The systems based on the virgin elastomer and the elastomer plasticized with 50% oligomer were examined. During thermal treatment (molding), the structure of the unvulcanized materials undergoes substantial changes. The morphology of dynamically vulcanized blends containing up to 75 wt % rubber is characterized by a homogeneous distribution of crosslinked rubber particles with a particle size of less than 2 μm in the continuous thermoplastic matrix. During PP blending with the plasticized elastomer, the oligomer diffuses into the thermoplastic phase, with the oligomer being distributed evenly between the blend components. As a result, the stress-strain characteristics of the plasticized systems decline relative to those of the oligomer-free materials. A comparative analysis of the dependence of the elastic modulus on the composition of the blends with the theoretical values obtained in terms of the Kerner, Uemura-Takayanagi, Davies, and Coran-Patel models was performed.  相似文献   

2.
The structure of polypropylene and its blends with ethylene-propylene-diene terpolymer containing the unvulcanized and the vulcanized rubber phase was studied by the techniques of X-ray diffraction, DSC, and NMR relaxation. It was shown that partial formation of the β form of polypropylene crystals took place during the dynamic vulcanization of the blends. The temperature and the enthalpy of melting of the blends remained unchanged, regardless of the presence of the β phase. By means of the NMR relaxation technique, it was established that an increase in the elastomer content led to alteration in the structure of amorphous regions of the blend. The character of plastic flow of the initial blends is determined by both the component ratio and the composition of the vulcanizing system. The amount of the β phase of PP had no effect of the yield stress of the blends. The ultimate strength and elongation at break do not depend on the vulcanizing-system composition at ethylene-propylene-diene elastomer volume fractions less than 0. 5. It was shown that equations based on the model of minimal cross section fit with the experimental results for the yield stress and the tensile strength of the PP-elastomer blends depending on the component ratio.  相似文献   

3.
Positron annihilation spectroscopy (PAS) was utilized to investigate the relationship between the free-volume holeproperties and miscibility of dynamically vulcanized EPDM/PP blend. The results showed that the noncrystalline region ofPP and EPDM in the blend was partially miscible and the miscibility of the blend became worse when the weight percent ofEPDM was <50%. This was also demonstrated by DMTA and mechanical properties of the blends with variouscompositions.  相似文献   

4.
The viscoelastic properties of binary blends of nitrile rubber (NBR) and isotactic polypropylene (PP) of different compositions have been calculated with mean‐field theories developed by Kerner. The phase morphology and geometry have been assumed, and experimental data for the component polymers over a wide temperature range have been used. Hashin's elastic–viscoelastic analogy principle is used in applying Kerner's theory of elastic systems for viscoelastic materials, namely, polymer blends. The two theoretical models used are the discrete particle model (which assumes one component as dispersed inclusions in the matrix of the other) and the polyaggregate model (in which no matrix phase but a cocontinuous structure of the two is postulated). A solution method for the coupled equations of the polyaggregate model, considering Poisson's ratio as a complex parameter, is deduced. The viscoelastic properties are determined in terms of the small‐strain dynamic storage modulus and loss tangent with a Rheovibron DDV viscoelastometer for the blends and the component polymers. Theoretical calculations are compared with the experimental small‐strain dynamic mechanical properties of the blends and their morphological characterizations. Predictions are also compared with the experimental mechanical properties of compatibilized and dynamically cured 70/30 PP/NBR blends. The results computed with the discrete particle model with PP as the matrix compare well with the experimental results for 30/70, 70/30, and 50/50 PP/NBR blends. For 70/30 and 50/50 blends, these predictions are supported by scanning electron microscopy (SEM) investigations. However, for 30/70 blends, the predictions are not in agreement with SEM results, which reveal a cocontinuous blend of the two. Predictions of the discrete particle model are poor with NBR as the matrix for all three volume fractions. A closer agreement of the predicted results for a 70/30 PP/NBR blend and the properties of a 1% maleic anhydride modified PP or 3% phenolic‐modified PP compatibilized 70/30 PP/NBR blend in the lower temperature zone has been observed. This may be explained by improved interfacial adhesion and stable phase morphology. A mixed‐cure dynamically vulcanized system gave a better agreement with the predictions with PP as the matrix than the peroxide, sulfur, and unvulcanized systems. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1417–1432, 2004  相似文献   

5.
研究了在聚丙烯(pp)与顺丁橡胶(BR)共混过程中加入橡胶硫化剂使共混体系中橡胶相动态硫化交联。研究结果表明,采用动态硫化法可提高共混物的冲击强度和拉伸强度。借助于SEM和DMA,证实了动态硫化使PP/BR共混体系具有相界面粘结良好的多相结构,改善了两相相容性。探讨了动态硫化增韧的机理。  相似文献   

6.
The influence of dynamic vulcanization on the amount of the sol fraction, the crosslink density, the melt flow index, and the mechanical properties of ternary (isotactic polypropylene-rubber-crumb rubber) and binary (rubber-crumb rubber) blends was studied. Two types of ethylene-propylene-diene terpolymer (elastomer) were used as the rubber component, the oil-free elastomer and the elastomer extended with paraffin oil during its synthesis. The blends were vulcanized in the presence of a sulfur accelerating system. It was shown that blends with crumb rubber having a particle size of less than 0.1 mm exhibited the best mechanical and rheological characteristics. The introduction of crumb rubber into thermoplastic elastomers that contain the oil-free ethylene-propylene-diene terpolymer leads, at a certain ratio of the components, to a rise in the melt flow index, regardless of the crumb-rubber particle size and of whether the rubber component was vulcanized.  相似文献   

7.
A thermoplastic elastomer (TPE) of ethylene propylene diene terpolymer (EPDM) and nylon with excellent mechanical properties was prepared by dynamic vulcanization. The effects of the curing systems, compatibilizer, nylon content and reprocessing on the mechanical properties of EPDM/nylon TPEs were investigated in detail. Experimental results indicate that maleic anhydride (MAH) grafted EPR has a better performance in compatibilizing the EPDM/nylon blends compared with other compatibilizers containing acid group. Tensile strength and elongation at break go through a maximum value at a compatibilizer resin content (on total rubber dosage) of 20%. EPDM/nylon TPE using sulfur as curative has higher tensile strength and elongation than that of TPE using phenolic resin or peroxide as curatives. Tensile strength and elongation at break increase with increasing nylon content. Scanning electron microscopy results show that rubber particles distributed at an average size of 1 μm in dynamic vulcanized EPDM/MAH-g-EPR/nylon TPE.  相似文献   

8.
The aim of the present study was to improve the compatibility in blends of natural rubber (NR) and polyamide 12 (PA12) by grafting NR with hydrophilic monomer, diacetone acrylamide (DAAM), via seeded emulsion polymerization. The increase in polarity of NR after grafting modification was confirmed by a considerable increase in the polar component of its surface energy. Blends of graft copolymers of NR and poly(diacetone acrylamide) prepared using 10 wt% of DAAM (NR‐g‐PDAAM10) and PA12 were prepared at a 60/40 blend ratio (wt%) using simple blend and dynamic vulcanization techniques. The mechanical and rheological properties of the resulting blends were subsequently investigated and compared with those of the corresponding blends based on unmodified NR. The results show that dynamic vulcanization led to a significant increase in both mechanical and rheological properties of the blends. It was also observed that the dynamically cured NR‐g‐PDAAM10/PA12 blend had smaller particle size of vulcanized rubber dispersed in the PA12 matrix than observed for the dynamically cured NR/PA12 blend. This is due to the compatibilizing effect of DAAM groups present in NR‐g‐PDAAM10 molecule, which decreases the interfacial tension between the two polymeric phases. Therefore, it can be stated that the interfacial adhesion between NR and PA12 was improved by the presence of DAAM groups in NR molecule. This was reflected in the higher tensile properties observed in the dynamically cured NR‐g‐PDAAM10/PA12 blend. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

9.
A novel graft copolymer of vinyltriethoxysilane onto ethylene propylene diene terpolymer has been developed by grafting varying contents of VTES using dicumyl peroxide as an initiator in a twin-screw extruder. Grafting of VTES and EPDM has been ascertained using FTIR. The EPDM-g-VTES developed has been blended with different weight percentage of linear low density polyethylene [LLDPE] by melt mixing. Thermal, thermal ageing and morphological behaviour of the blends are studied with respect to the effect of blend composition, static vulcanization and dynamic vulcanization with varying quantities of VTES and LLDPE. The incorporation of silane moiety onto EPDM raises the inception and final decomposition temperature. The stability EPDM-g-VTES/LLDPE blend increases with increase in concentration of EPDM-g-VTES due to thermally stable Si-O-Si linkage. It was ascertain from SEM micrograph that EPDM-g-VTES/LLDPE blends lead to formation of interpenetrating crosslinked network during hot water treatment and by treatment with DCP, respectively. The linear, statically vulcanized, dynamically vulcanized and filled blends of EPDM-g-VTES/LLDPE have been characterized to assess the suitability of the blends for high performance applications. In addition, it is also observed that the incorporation of fillers improves thermal stability of the blends.  相似文献   

10.
Dynamic vulcanization of reclaimed tire rubber (RTR) and HDPE blends was reported. The effect of blend ratio, methods of vulcanization, i.e. sulphur, peroxide, and mixed system and the addition of compatibilizer on mechanical, thermal, and rheological properties were investigated. The blend with highest impact strength was obtained from 50/50 RTR/HDPE vulcanized by sulphur. Increasing the RTR content to more than 50% resulted in a decrease in the impact strength of blend, most likely due to the increasing carbon black content. For tensile strength, the presence of rubber and carbon black, however, unavoidably caused a drop in this property. Comparing among three methods of vulcanization, sulphur system seems to be the most effective method. Results from solvent swelling ratio, glass transition temperatures and viscosity indicated that the sulphur vulcanization created the highest degree of cross-link and filler-matrix interaction in the RTR/HDPE blend. Morphology of the blends was also assessed by scanning electron microscopy (SEM).  相似文献   

11.
Graft polymerization of vinyltriethoxysilane (VTES) onto ethylene‐propylene‐diene terpolymer (EPDM) was carried out in toluene using dicumylperoxide (DCP) as initiator. Effects of various parameters (EPDM content, VTES content, reaction time, reaction temperature and initiator concentration) on the grafting efficiency of VTES onto EPDM were investigated. At the optimum grafting efficiency conditions, EPDM‐g‐VTES was developed by melt mixing in a twin screw extruder and then linear (l), statically vulcanized (s) and dynamically vulcanized (d) blends of EPDM‐g‐VTES with linear low‐density polyethylene (LLDPE) with varying percentage compositions were prepared by melt mixing in the twin screw extruder. The grafting of VTES onto EPDM and its crosslinking was confirmed by FT‐IR. The characterization of mechanical properties such as tensile strength, elongation at break, Young's modulus and hardness, differential scanning calorimetry (DSC) analysis and morphology were studied and compared for the EPDM‐g‐VTES/LLDPE blends. The study reveals that the dynamically vulcanized blend improves the mechanical and thermal properties due to the presence of efficient interaction between component polymers when compared with other blends. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
In this study, relatively large amounts of polypropylene (PP), ethylene‐propylene‐diene (EPDM), and multi‐walled carbon nanotube (MWCNT) were melt‐mixed with and without DCP. Dynamically vulcanized PP/EPDM (TPV)/MWCNT nanocomposites were prepared by two methods: the MWCNTs were added either before or after the dynamic vulcanization of the blends. The effects of composition, rotor speed, and dynamic vulcanization on their surface resistivity were investigated. The surface resistivity of uncross‐linked PP/EPDM/MWCNT nanocomposites increases with increasing the content of EPDM. At PP/EPDM (70/30 wt%) nanocomposite with 1.5 phr MWCNT, slightly lower surface resistivity is obtained by increasing the rotor speed during mixing. However, for PP/EPDM (50/50 wt%) and PP/EPDM (30/70 wt%) nanocomposites, surface resistivity decreases with increasing the rotor speed from 30 to 60 rpm. But further increase in rotor speed (90 rpm) leads to an increase of surface resistivity. When the MWCNTs were added after the dynamic vulcanization of the blends, the surface resistivity of TPV70/MWCNTnanocomposite is lower than that of uncross‐linked PP/EPDM/MWCNT nanocomposite. However, when the MWCNTs were added before the dynamic vulcanization of the blends, the surface resistivity of TPV70/MWCNT nanocomposite is >1012 Ω/square. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
Blends of polypropylene and an elastomer (ethylene propylene diene terpolymer, EPDM) are systematically investigated to determine the effect of the rubber on the polymer properties. Five compositions on the complete range of blend compositions are analyzed. The study reported here is a first of a series which main objective is to analyze in a systematic way the influence of the different factors that determine the effectiveness of EPDM as an impact modifier for PP. In this first part of the study, the processing behavior of the PP-EPDM blends are analyzed and the mechanical properties of the processed blends (tensile, flexural and impact resistance) are examined. Halpin-Tsai and porosity models successfully represent the mechanical behavior of the blends. The model results allow a physical interpretation of the role of the dispersed phase in terms of the aspect ratio and of the stress concentration factors associated to the dispersed particles. Moreover, the mechanical properties are correlated with the morphology of the blends studied by scanning electron microscopy, where two phases are clearly observed in the complete range of compositions. The results show that PP-EPDM blends with at low rubber content present a good processability, without significant deterioration with respect to neat PP and with a considerable improvement of the room and low temperature performance.  相似文献   

14.
In this work, polypropylene (PP)/ethylene-propylene-diene monomer (EPDM)/butadiene acrylonitrile rubber (NBR) TPVs with different EPDM/NBR ratios were prepared by the core-shell dynamic vulcanization. The relationship between the core-shell structure and mechanical properties of the TPVs were thoroughly investigated. The formation of core-shell structure by adding NBR is conducive to the mechanical properties of the TPVs. The ratio of EPDM to NBR has an important effect on the structure and performances of the final products, and there is a critical ratio for this effect change. Transmission electron microscope (TEM), tensile test, reprocessing test, ageing test, rheological behavior test and stress relaxation were used to characterize the morphology and properties of the TPVs in detail. It was found that when the ratio of EPDM/NBR was 2:4, the tensile strength increased by ~14% compared with PP/EPDM TPV without NBR. Meanwhile, the reprocessing properties, rheological characteristics and instantaneous tensile deformation, etc. all exhibited sudden changes at this critical ratio.  相似文献   

15.
The optimum condition of processing parameters (mixing temperature, rotor speed, fill factor, and blend ratio) and prediction models for the best key mechanical properties of ethylene propylene diene terpolymer/polypropylene thermoplastic vulcanizates (EPDM/PP TPVs) was investigated by using the Taguchi's optimization technique and data analysis. The results reveal that all of the processing parameters affected significantly the mechanical properties of the EPDM/PP TPVs, but specifically the blend ratio contributed more than 90% in effect size on tensile strength and tension set. There were three main factors, the mixing temperature, the fill factor, and the blend ratio, influencing the elongation at break. Furthermore, the mathematic models were effective and reliable in predicting the properties of TPVs. The correlation of mechanical properties, stress relaxation, and phase morphologies of the TPVs prepared from the predicted models was also investigated. It can be summarized that the morphological structure and stress relaxation of the TPVs were strongly governed by the EPDM content in the blend ratio. That is, the higher the EPDM content, the better phase morphology having smaller size of the vulcanized EPDM particles distributed in the PP matrix and the higher rate of stress relaxation. Moreover, these two properties were then principally pushing the mechanical characteristics of the EPDM/PP TPVs. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
The mechanical properties and the crystal morphological structures of the dynamically photocrosslinked polypropylene (PP)/ethylene-propylene-diene terpolymer (EPDM) blends have been studied by means of mechanical tests, wide-angle X-ray diffraction(WAXD), and differential scanning calorimetry(DSC). The dynamically photocrosslinking of the PP/EPDM blends can improve the mechanical properties considerably, especially the notched Izod impact strength at low temperatures. The data obtained from the mechanical tests show that the notched Izod impact strength of the dynamically photocrosslinked sample with 30% EPDM at -20℃ is about six times that of the uncrosslinked sample with the same EPDM component. The results from the gel content, the results of WAXD, and the DSC measurements reveal the enhanced mechanism of the impact strength for the dynamically photocrosslinked PP/EPDM blends as follows: (1) There exists the crosslinking of the EPDM phase in the photocrosslinked PP/EPDM blends ; (2) The β-type crystal structureof PP is formed and the content of α-type crystal decreases with increasing the EPDM component; (3) The graft copolymer of PP-g-EPDM is formed at the interface between the PP and EPDM components. All the above changes of the crystal morphological structures are favorable for increasing the compatibility and enhancing the toughness of the PP/EPDM blends at low temperatures.  相似文献   

17.
动态固化聚丙烯/环氧树脂共混物的研究   总被引:3,自引:0,他引:3  
将动态硫化技术应用于热塑性树脂 热固性树脂体系 ,制备了动态固化聚丙烯 (PP) 环氧树脂共混物 .研究了动态固化PP 环氧树脂共混物中两组分的相容性、力学性能、热性能和动态力学性能 .实验结果表明 ,马来酸酐接枝的聚丙烯 (PP g MAH)作为PP和环氧树脂体系的增容剂 ,使分散相环氧树脂颗粒变细 ,增加了两组分的界面作用力 ,改善了共混物的力学性能 .与PP相比 ,动态固化PP 环氧树脂共混物具有较高的强度和模量 ,含 5 %环氧树脂的共混物拉伸强度和弯曲模量分别提高了 30 %和 5 0 % ,冲击强度增加了 15 % ,但断裂伸长率却明显降低 .继续增加环氧树脂的含量 ,共混物的拉伸强度和弯曲模量增加缓慢 ,冲击强度无明显变化 ,断裂伸长率进一步降低 .动态力学性能分析 (DMTA)表明动态固化PP 环氧树脂共混物是两相结构 ,具有较高的储能模量 (E′)  相似文献   

18.
In this study, the radiation degradation/modification of the vulcanized EPDM and the effects of dose rate, peroxide type/content in vulcanization system and ENB content of EPDM were studied to investigate the change in the extend of the modification/degradation of the mechanical properties of vulcanized EPDM via gamma irradiation. In addition, thermal, dynamic mechanical, ATR-FTIR, TGA, TGA-FTIR tests were carried out to understand the change of properties of vulcanized EPDM via irradiation.Samples were irradiated with two different dose rates of 1280 and 64.6 Gy/h. Total dose of irradiation was up to 184 kGy. The FTIR spectral analysis showed structural changes of EPDM via irradiation. It was observed that the dose rate changed the mechanical properties with different extends. The change of ENB content of EPDM and peroxide type and content in vulcanization system affect extend of the modification/degradation of the EPDM's properties.  相似文献   

19.
张辉  常小刚 《广州化学》2012,37(3):50-59
综述了三元乙丙橡胶/聚丙烯(EPDM/PP)热塑性弹性体的发展历程、市场情况以及EPDM/PP热塑性弹性体的结构、性能及其影响因素。EPDM/PP热塑性弹性体由EPDM和PP通过动态硫化技术制备而成,在室温下具有橡胶的高弹性,在加工温度下具有塑料的流动性。在性能上,EPDM/PP热塑性弹性体受加工设备、共混工艺、配合体系的综合影响。  相似文献   

20.
Summary: The present communication reports the first use of electron tomography in reconstructing the three‐dimensional morphology in thermoplastic elastomer blends. The blends investigated were dynamically vulcanized blends of ethylene‐propylene‐diene (EPDM) rubber/poly(propylene)/oil and polystyrene‐block‐(ethylene‐co‐butylene)‐block‐polystyrene (SEBS)/poly(propylene)/oil. An easy identification of blend morphology could be carried out at blend compositions, where conventional transmission electron microscopic imaging gives misleading information. This technique gives a higher resolution than any other microscopic technique, and is applicable to blends with dispersed as well as co‐continuous morphologies.

Example of a tomographic model of partially co‐continuous SEBS phases in a SEBS/PP/oil thermoplastic blend. Only the contours of the SEBS phase are shown.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号