共查询到20条相似文献,搜索用时 15 毫秒
1.
A new on-line cloud point extraction (CPE) system coupled to ICP-OES was designed for simultaneous extraction, preconcentration and determination of Cd2+, Co2+, Cr3+, Cu2+, Fe3+ and Mn2+ ions in water samples. This is based on the complexation of the metal ions with 1-(2-thenoyl)-3,3,3-trifluoraceton reagent (TTA) at pH 6.0 in the presence of non-ionic surfactant of Triton X-114. The micellar solution was heated above 60 °C and loaded through a column packed with cotton, which acts as a filter for retaining the analyte-entrapped surfactant-rich phase. Then the surfactant-rich phase was eluted using propanol:0.5 mol L−1 nitric acid solution (75:25, v/v) at a flow rate of 3.0 mL min−1 and directly introduced into the nebulizer of the ICP-OES. Several factors influencing the instrumental conditions and extraction were evaluated and optimized. Under the optimum conditions, the enhancement factors of the proposed method for target ions were between 42 and 97, the detection limits (DLs) were in the range of 0.1-2.2 μg L−1. The relative standard deviations (R.S.D.s) at 100 μg L−1 concentration levels of each ion were found to be less than 4.6%. Also, the calibration graphs were linear in the range of 0.5-100 μg L−1 with the correlation coefficients within the range of 0.9948-0.9994.Finally, the developed method was successfully applied to the extraction and determination of the mentioned metal ions in the tap, well, sea and mineral water samples and satisfactory results were obtained. 相似文献
2.
An on-line separation preconcentration system coupled to electrothermal (graphite furnace) atomic absorption spectrometry was developed. A miniature column packed with iminodiacetic acid ethyl cellulose (IDAEC) was inserted into the loop. A peristaltic pump was used to deliver solutions. A flow of air was driven into the packed column, evacuating it between sample loading, washing and elution. The retained analyte was introduced on-line to graphite furnace using countercurrent elution with HNO3. The system was applied for the determination of V, Co and Pb in medicinal mineral water samples, and nickel in sea water samples. The detection limits (3σ) were 0.058, 0.022, 0.067, 0.062 μg/l for Co, Pb, V, and Ni, respectively. The R.S.D. (n=5) was <5% at 0.4–1.0 μg/l concentration range. 相似文献
3.
Tomoharu Minami Wataru Konagaya Linjie Zheng Shotaro Takano Masanobu Sasaki Rena Murata Yuzuru Nakaguchi Yoshiki Sohrin 《Analytica chimica acta》2015
A novel automated off-line preconcentration system for trace metals (Al, Mn, Fe, Co, Ni, Cu, Zn, Cd, and Pb) in seawater was developed by improving a commercially available solid-phase extraction system SPE-100 (Hiranuma Sangyo). The utilized chelating resin was NOBIAS Chelate-PA1 (Hitachi High-Technologies) with ethylenediaminetriacetic acid and iminodiacetic acid functional groups. Parts of the 8-way valve made of alumina and zirconia in the original SPE-100 system were replaced with parts made of polychlorotrifluoroethylene in order to reduce contamination of trace metals. The eluent pass was altered for the back flush elution of trace metals. We optimized the cleaning procedures for the chelating resin column and flow lines of the preconcentration system, and developed a preconcentration procedure, which required less labor and led to a superior performance compared to manual preconcentration (Sohrin et al. [5]). The nine trace metals were simultaneously and quantitatively preconcentrated from ∼120 g of seawater, eluted with ∼15 g of 1 M HNO3, and determined by HR-ICP-MS using the calibration curve method. The single-step preconcentration removed more than 99.998% of Na, K, Mg, Ca, and Sr from seawater. The procedural blanks and detection limits were lower than the lowest concentrations in seawater for Mn, Ni, Cu, and Pb, while they were as low as the lowest concentrations in seawater for Al, Fe, Co, Zn, and Cd. The accuracy and precision of this method were confirmed by the analysis of reference seawater samples (CASS-5, NASS-5, GEOTRACES GS, and GD) and seawater samples for vertical distribution in the western North Pacific Ocean. 相似文献
4.
Rosi Ketrin Katarina 《Talanta》2009,78(3):1043-990
On-line preconcentration and determination of transition and rare-earth metals in water samples was performed using a Multi-Auto-Pret system coupled with inductively coupled plasma-atomic emission spectrometry (ICP-AES). The Multi-Auto-Pret AES system proposed here consists of three Auto-Pret systems with mini-columns that can be used for the preconcentration of trace metals sequentially or simultaneously, and can reduce analysis time to one-third and running cost of argon gas and labor. A newly synthesized chelating resin, ethylenediamine-N,N,N′-triacetate-type chitosan (EDTriA-type chitosan), was employed in the Multi-Auto-Pret system for the collection of trace metals prior to their measurement by ICP-AES. The proposed resin showed very good adsorption ability for transition and rare-earth metal ions without any interference from alkali and alkaline-earth metal ions in an acidic media. For the best result, pH 5 was adopted for the collection of metal ions. Only 5 mL of samples could be used for the determination of transition metals, while 20 mL of samples was necessary for the determination of rare-earth metals. Metal ions adsorbed on the resin were eluted using 1.5 M nitric acid, and were measured by ICP-AES. The proposed method was evaluated by the analysis of SLRS-4 river water reference materials for trace metals. Good agreement with certified and reference values was obtained for most of the metals examined; it indicates that the proposed method using the newly synthesized resin could be favorably used for the determination of transition and rare-earth metals in water samples by ICP-AES. 相似文献
5.
Marta Knap 《Talanta》2007,71(1):406-410
An on-line preconcentration procedure for the determination of manganese using flow-injection approach with flame atomic absorption spectrometry as a detection method is described. The proposed method is based on the complexation between Mn(II) and 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin (TCPP). Two approaches were investigated for enrichment of manganese; the formation of Mn-TCPP complex in a solution followed by its retention on a sorbent and the sorption of manganese ions onto the TCPP-modified resin. The best results was obtained for the first approach when 10−5 M reagent was on-line mixed with an aqueous sample solution and passed through the microcolumn packed with anion-exchange resin Amberlite IRA-904 for 5 min. The sorbed complexes were then eluted with 0.5 ml of 2 M HNO3. A good precision (2.2-3.1% R.S.D. for 50 μg l−1 manganese) and the enrichment factor of 30 were obtained with the detection limit of 12 μg l−1 for 5 min loading time. The interference of anions and cations has been studied to optimize the conditions and the method was applied for determination of manganese in natural water samples. The results obtained by FI-FAAS and ETAAS (as a reference method) were not statistically different for a significance level of 0.05. 相似文献
6.
Summary An on-line anion-exchange preconcentration hydride generation ICP system for the determination of total inorganic arsenic in water is described. The column was packed with strongly basic anion-exchange resin (AG 1-X8). Experimental conditions including pH of the sample solution, eluent, flow rate of eluent, oxidation states of arsenic and competing anion ions were studied. Compared with the conventional continuous hydride generation ICP, a 9.2-fold improvement in sensitivity was obtained with RSD 1–2% at 100 ng/ml. The detection limit (3) was 0.08 ng/ml. The recoveries in water samples were satisfactory. The system provides complete automation of sample loading, eluting and regenerating of the resin.On leave from Shanghai Institute of Metallurgy, Chinese Academy of Sciences, Shanghai, China 200050 相似文献
7.
8.
Salonia JA Wuilloud RG Gásquez JA Olsina RA Martinez LD 《Fresenius' Journal of Analytical Chemistry》2000,367(7):653-657
An on-line zinc preconcentration and determination system implemented with inductively coupled plasma atomic emission spectrometry (ICP-AES) associated with flow injection (FI) was studied. The zinc was retained as zinc-2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (Zn-(5-Br-PADAP)) complex at pH 9.2. The zinc complex was removed from the knotted reactor (KR) with 30% v/v nitric acid. An enrichment factor of 42 was obtained for the KR system with respect to ICP-AES using pneumatic nebulization. The detection limit for the preconcentration of 10 mL of aqueous solution was 0.09 microg/L. The precision for 10 replicate determinations at the 5 microg/L Zn level was 2.3% relative standard deviation (RSD), calculated with the peak heights obtained. The calibration graph using the preconcentration system for zinc was linear with a correlation coefficient of 0.9997 at levels near the detection limits up to at least 100 microg/L. The method was succesfully applied to the determination of zinc in river water samples. 相似文献
9.
J. A. Salonia R. G. Wuilloud J. A. Gásquez R. A. Olsina L. D. Martinez 《Analytical and bioanalytical chemistry》2000,367(7):653-657
An on-line zinc preconcentration and determination system implemented with inductively coupled plasma atomic emission spectrometry
(ICP-AES) associated with flow injection (FI) was studied. The zinc was retained as zinc-2-(5-bromo-2-pyridylazo)-5-diethylaminophenol
(Zn-(5-Br-PADAP)) complex at pH 9.2. The zinc complex was removed from the knotted reactor (KR) with 30% v/v nitric acid.
An enrichment factor of 42 was obtained for the KR system with respect to ICP-AES using pneumatic nebulization. The detection
limit for the preconcentration of 10 mL of aqueous solution was 0.09 μg/L. The precision for 10 replicate determinations
at the 5 μg/L Zn level was 2.3% relative standard deviation (RSD), calculated with the peak heights obtained. The calibration
graph using the preconcentration system for zinc was linear with a correlation coefficient of 0.9997 at levels near the detection
limits up to at least 100 μg/L. The method was succesfully applied to the determination of zinc in river water samples.
Received: 27 December 1999 / Revised: 14 March 2000 / Accepted: 15 March 2000 相似文献
10.
Two approaches to immobilize complex-forming analytical reagents (PAN, PAR, Xylenol orange, Brombenzothiazo, Crystal violet, Cadion, and Sulfochlorophenolazorhodanine) for the preparation of new sorbents and indicator powders are suggested: on-line coating of reversed-phase silica gel by reagents or doping of porous sol-gel silica with reagents. The retention of Ag, Cd, Cu(II), Co(II), Fe(III), Mn(II), Ni, Pb, and Zn on the sorbents developed was investigated. Quantitative sorption and desorption conditions were optimized. Procedures for the determination of Cd, Cu(II), Fe(III), Pb, and Zn with flame atomic absorption, spectrophotometric, and diffusion scattering spectrometric detection were elaborated. Detection limits for Cd, Cu(II), Fe(III), Pb, and Zn were 3 μg/L, 6 μg/L, 5 μg/L, 40 μg/L, and 1 μg/L, respectively. The procedures were used for the analysis of various real samples, e.g., natural and waste waters, and food. 相似文献
11.
E. Morosanova A. Velikorodny Y. Zolotov 《Fresenius' Journal of Analytical Chemistry》1998,361(3):305-308
Two approaches to immobilize complex-forming analytical reagents (PAN, PAR, Xylenol orange, Brombenzothiazo, Crystal violet,
Cadion, and Sulfochlorophenolazorhodanine) for the preparation of new sorbents and indicator powders are suggested: on-line
coating of reversed-phase silica gel by reagents or doping of porous sol-gel silica with reagents. The retention of Ag, Cd,
Cu(II), Co(II), Fe(III), Mn(II), Ni, Pb, and Zn on the sorbents developed was investigated. Quantitative sorption and desorption
conditions were optimized. Procedures for the determination of Cd, Cu(II), Fe(III), Pb, and Zn with flame atomic absorption,
spectrophotometric, and diffusion scattering spectrometric detection were elaborated. Detection limits for Cd, Cu(II), Fe(III),
Pb, and Zn were 3 μg/L, 6 μg/L, 5 μg/L, 40 μg/L, and 1 μg/L, respectively. The procedures were used for the analysis of various
real samples, e.g., natural and waste waters, and food.
Received: 17 July 1997 / Revised: 20 January 1998 / Accepted: 5 February 1998 相似文献
12.
A simple and rapid in situ preconcentration method for the spectrophotometric determination of trace ammonia nitrogen in environmental water samples has been developed based on solid-phase extraction using a small column packed with octadecyl group-bonded silica gel (Sep-Pak C18 cartridge). A water sample was taken into a graduated syringe for easy and simple operation and prevention of contamination immediately after sample collection. Ammonia in the sample was reacted with hypochlorite and thymol to be converted into indothymol blue; then the formed indothymol blue was collected as an ion pair between indothymol blue and tetrabutylammonium ion on a Sep-Pak C18 cartridge. The indothymol blue on the cartridge was stable for 4 days. The retained indothymol blue was easily eluted with a mixture of methanol and 0.01 mol/l sodium hydroxide solution. The color intensity due to the indothymol blue was spectrophotometrically measured at 725 nm. The proposed method was successfully applied to environmental water samples such as river water. 相似文献
13.
A flow injection (FI) on-line preconcentration procedure by using a nanometer-sized alumina packed micro-column coupled to inductively coupled plasma mass spectrometry (ICP-MS) was described for simultaneous determination of trace metals (V, Cr, Mn, Co, Ni, Cu, Zn, Cd and Pb) in the environmental samples. The effects of pH value, sample flow rate, preconcentration time, and interfering ions on the preconcentration of analytes have been investigated. Under the optimized operating conditions, the adsorption capacity of the nanometer-sized alumina for V, Cr, Mn, Co, Ni, Cu, Zn, Cd and Pb were found to be 11.7, 13.6, 15.7, 9.5, 12.2, 13.3, 17.1, 17.7 and 17.5 mg g−1, respectively. With 60 s preconcentration time and 60 s elution time, an enrichment factor of 5 and the sampling frequency of 15 h−1 were obtained. The proposed method has been applied to the determination of trace metals in environmental certified reference materials and natural water samples with satisfactory results. 相似文献
14.
Chaozhang Huang 《Talanta》2007,73(2):274-281
Mesoporous titanium dioxide as a novel solid-phase extraction material for flow injection micro-column preconcentration on-line coupled with ICP-OES determination of trace metals (Co, Cd, Cr, Cu, Mn, Ni, V, Ce, Dy, Eu, La and Yb) in environmental samples was described. Possessing a high adsorption capacity towards the metal ions, mesoporous titanium dioxide has found to be of great potential as an adsorbent for the preconcentration of trace metal ions in samples with complicated matrix. The experimental parameters including pH, sample flow rate, volume, elution and interfering ions on the recovery of the target analytes were investigated, and the optimal experimental conditions were established. Under the optimized operating conditions, a preconcentration time of 90 s and elution time of 18 s with enrichment factor of 10 and sampling frequency of 20 h−1 were obtained. The detection limits of this method for the target elements were between 0.03 and 0.36 μg L−1, and the relative standard deviations (R.S.D.s) were found to be less than 6.0% (n =7, c =5 ng mL−1). The proposed method was validated using a certified reference material, and has been successfully applied for the determination of the afore mentioned trace metals in natural water samples and coal fly ash with satisfactory results. 相似文献
15.
Yttrium hydroxide quantitatively coprecipitated Be(II), Ti(IV), Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), and Pb(II) at pH 9.6 - 10.0 for seawater and pH 10.5 - 11.4 for a table-salt solution. The coprecipitated elements could be determined by inductively coupled plasma atomic emission spectrometry; yttrium was used as an internal standard element. The detection limits ranged from 0.001(6) microg (Mn(II)) to 0.22 microg (Zn(II)) in 100 mL of sample solutions. The operation time required to separate 11 elements was approximately 30 min. 相似文献
16.
Estefanía M. Martinis Roberto A. Olsina Jorgelina C. Altamirano Rodolfo G. Wuilloud 《Talanta》2009,78(3):857-524
A novel on-line preconcentration method based on liquid-liquid (L-L) extraction with room temperature ionic liquids (RTILs) coupled to flame atomic absorption spectrometry (FAAS) was developed for cadmium determination in plastic food packaging materials. The methodology is based on the complexation of Cd with 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (5-Br-PADAP) reagent after sample digestion followed by extraction of the complex with the RTIL 1-butyl-3-methylimidazolium hexafluorophosphate ([C4mim][PF6]). The mixture was loaded into a flow injection analysis (FIA) manifold and the RTIL rich-phase was retained in a microcolumn filled with silica gel. The RTIL rich-phase was then eluted directly into FAAS. A enhancement factor of 35 was achieved with 20 mL of sample. The limit of detection (LOD), obtained as IUPAC recommendation, was 6 ng g−1 and the relative standard deviation (R.S.D.) for 10 replicates at 10 μg L−1 Cd concentration level was 3.9%, calculated at the peak heights. The calibration graph was linear and a correlation coefficient of 0.9998 was achieved. The accuracy of the method was evaluated by both a recovery study and comparison of results with direct determination by electrothermal atomic absorption spectrometry (ETAAS). The method was successfully applied for Cd determination in plastic food packaging materials and Cd concentrations found were in the range of 0.04-10.4 μg g−1. 相似文献
17.
A novel method of online microcolumn separation and preconcentration coupled to inductively coupled plasma atomic emission spectrometry (ICP-AES) with the use of acetylacetone-modified silica gel as packing material was developed for the determination of trace rare earth elements (REEs) in environmental and food samples. The main parameters affecting online separation/preconcentration, including pH, sample flow rate, sample volume, elution and interfering ions, have been investigated in detail. Under the optimized operating conditions, the adsorption capacity values for Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu were 25.65, 23.23, 24.01, 19.40, 22.89, 23.77, 24.40, 23.96, 25.58, 25.15, 24.86, 22.75, 16.05, 24.13, 26.51 and 27.93 mg g(-1), respectively. Detection limits (3sigma) based on three times standard deviations of the blanks by 8 replicates were in the range from 48 pg mL(-1) for Lu to 1003 pg mL(-1) for Sm. With 90 s preconcentration time and 10 s elution time, the enrichment factor was 10 and the sample frequency was 28 h(-1). The precisions (RSDs) obtained by determination of a 250 ng mL(-1) (n = 8) REEs standard solution were in the range from 1.7% for Y to 4.4% for Sm. The proposed method was successfully applied to the determination of trace REEs in pig liver, agaric and mushroom. To validate the proposed method, we analyzed three certified reference materials (GBW07401 soil, GBW07301a sediment, and GBW07605 tea leaves). The determined values were in a good agreement with the certified values. The method is rapid, selective, sensitive and applicable to the determination of trace REEs in biological and environmental samples with complicated matrix effects. 相似文献
18.
A highly sensitive and selective spectrophotometric method for determination of trace lead in water after pre-concentration using mercaptosephadex (MS-50) has been developed, the method based on the color reaction of lead(II) with dibromohydroxylphenylporphyrin. Under optimal condition, lead(II) reacts with the reagent to form a 1:2 yellow complex in presence of TritonX-100, which has a maximum absorption peak at 479 nm. The color reaction can complete rapidly and remain stable for 24 h in room temperature. The molar absorption coefficient of the lead complex, the limit of quantification, the limit of detection and relative standard deviations were found to be 2.35×105 l mol−1 cm−1, 4.3, 1.4 ng ml−1 and 1.0%, respectively. The absorbance of the lead complex at 479 nm is linear up to 0.48 μg ml−1 of lead(II). The effect of various co-existing ions in water were examined seriously. No interference was observed. Moreover, a simple pre-concentration method for trace lead in water was also studied using MS-50. It was found that trace lead in water can be adsorbed in 1.0 mol l−1 HCl and dissociated from MS-50 with 4.0 mol l−1 HCl quantitatively, that improves the selectivity and the sensitivity of method (its detection limit (3 s) changed into 0.2 ng ml−1 of lead) obviously. The proposed method has been applied to determine trace lead in water samples with satisfactory results. 相似文献
19.
A newly synthesized alkyl phosphinic acid resin (APAR) was used for on-line preconcentration of trace rare earth elements (REES, lanthanides including yttrium) and then determined by inductively coupled plasma mass spectrometry. REEs in seawater could be on-line concentrated on the APAR packed column (4.6 mm i.d. × 50 mm in length), and eluted from the column with 0.5 mL 0.1 mol L−1 nitric acid within 30 s. An enrichment factor of nearly 400 was achieved for all REEs when the seawater sample volume was 200 mL, while the matrix and coexisting spectrally interfering ions such as barium, tin and antimony could be simultaneously separated. The detection limits of this proposed method for REEs were in the range from 1.43 pg L−1 of holmium to 12.7 pg L−1 of lanthanum. The recoveries of REEs were higher than 97.9%, and the precision of the relative standard deviation (R.S.D., n = 6) was less than 5%. The method has been applied to the determination of soluble REEs in seawater. 相似文献
20.
A simplified preconcentration method for a range of ultra-trace level pharmaceuticals in natural waters has been developed. Solid phase extraction was performed on-line using a micro-reversed-phase monolithic silica column, allowing for very rapid trace enrichment from large volume (500 ml) samples with minimal sample handling. Acceptable recoveries of >70% were obtained for the majority of compounds investigated and the monolithic columns could be washed and conditioned on-line with no sample carryover and used reproducibly for up to eight extractions each. The on-line SPE-LC-UV method was coupled to electrospray ionisation ion trap mass spectrometry (ESI-MS) to increase both selectivity and specificity. Detection limits were determined in spiked river and tap water samples and found to lie in the low ng/l region using sample volumes of 500 ml, loaded at a flow rate of 10 ml/min, and therefore, were suitable for ultra trace analysis. 相似文献