首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 328 毫秒
1.
毛细管柱气相色谱法测定银杏叶提取物中银杏萜内酯含量   总被引:4,自引:0,他引:4  
对银杏叶提取物中银杏萜内酯(包括BB和GA,GB,GC,GJ)的毛细管柱气相色谱分离条件作了试验,达到银杏萜内酯成分的良好分离.选择了内标物角鲨烷,理论计算并直接测定了银杏萜内酯的相对质量校正因子,采用内标法测定了各组分的含量.BB、GA、GB、GC回收率依次为95.2 9%,95.5%,94.6%,96.1%.  相似文献   

2.
银杏茶中有毒成分银杏酸的研究   总被引:3,自引:0,他引:3  
吴向阳  仰榴青  陈钧 《分析化学》2003,31(11):1407-1407
1 引  言银杏茶是采用银杏叶为原料精制而成的一种保健品 ,目前市场上销售的银杏茶已有上百种 ,其主要药用成分黄酮和内酯具有改善心脑血管循环、拮抗血小板活化因子和抗血栓等作用 ,可用于预防和治疗老年性痴呆和脑血栓等疾病。然而银杏叶中还含有一些有毒成分 ,研究发现其中的银杏酸具有致敏性、细胞毒性和免疫毒性等作用 ,是银杏叶提取物EGb和银杏茶中的主要毒性物质 ,其食用安全性已引起人们的高度重视。目前国际上公认的EGb质量标准规定银杏酸含量必须小于 5 μg/g。但是有关银杏酸分析方法公开报道较少 ,未见银杏茶中银杏酸检测…  相似文献   

3.
银杏叶中银杏萜内酯的GC/MS分析研究   总被引:1,自引:0,他引:1  
银杏萜内酯是银杏叶中具有特殊药用价值的活性成分.目前已建立了多种对银杏萜内酯的研究方法.如超临界提取法~([1])、气相色谱/质谱联用技术~([2])等,但分别存在着前处理复杂或未能检测到GJ的不足.本研究对利用GC/MS联用技术进行分析研究,取得了银杏叶中银杏萜内酯五种活性组分较好分离的结果.  相似文献   

4.
南雄银杏叶中内酯的高效液相色谱法测定   总被引:3,自引:2,他引:3  
用高效液相法分析了广东省南雄市不同采收时间,不同树龄的银杏叶中的银杏内酯含量;采用Kromasil C18柱、甲醇-水-四氢呋喃流动相、流速1mL/min、差示折光检测器、柱温35℃、外标法定量,样品用聚酰胺柱纯化,获得了满意的分离效果;结果表明银杏内酯含量随树龄不同,采收时间不同而不同,南雄银杏叶内酯平均含量为0.23%(w)。  相似文献   

5.
在现代医药研究中 ,银杏内酯受到高度的重视 ,最常见的是用于治疗哮喘和支气管炎 .药理研究表明其对血小板激活因子 ( platelet activatingfactor,PAF)有显著抑制活性 .我们用半经验量子化学计算方法AM 1 SM 1计算了银杏内酯分别在正十六烷和水溶液中的分子结构和电子结构 ,计算结果阐释银杏内酯类化合物与受体的氢键和疏水作用模式  相似文献   

6.
采用热辅助下的在线甲基衍生化-气相色谱法测定银杏叶中的银杏酸。银杏叶样品与衍生化试剂四甲基氢氧化铵(TMAH, 25%甲醇溶液)同时进样,在300 ℃的进样口瞬间生成了银杏酸甲基衍生物,银杏叶中6种银杏酸得到很好的分离。在一定的质量浓度范围内银杏酸的线性关系良好,回归系数均大于0.9966,最低检出限范围为0.8~2.8 mg/kg。银杏叶中主要的烷基酚类物质为银杏酸C13∶0,C15∶1和C17∶1,它们的含量(用质量分数表示)分别为11.0%,36.7%和42.8%,3次平行测定的相对标准偏差(RSD)均小于3.4%(n=3)。银杏叶样品中总银杏酸的含量为4.0~10.9 mg/g。该方法无需繁琐费时的衍生化和纯化等前处理步骤,不失为银杏叶中银杏酸测定的一种快速、简便、准确的方法。  相似文献   

7.
银杏叶ginkgo biloba .L中含有多种二萜内酯和倍半萜内酯.Furukawa.S于1932年首次分离得到银杏内酯混合物;直到1967年,才由Koji Nakanishi和Okabe.K等人鉴定出其中各个成分的结构,并分别命名为Ginkgolide A、B、C、M(简称GA、GB、GC、GM)[1];Weinges K等分别于1969年和1987年分离并鉴定出白果内酯(Bilobalide,BD)[2]和Ginkgolide J[3](GJ).银杏内酯具有抗血小板活化因子(PAF)的作用[4],引起了世界医疗行业的广泛关注.对银杏内酯的HPLC分析常见的检测方法主要有UV、RI和近年出现的ELSD[5],但这些检测方法都有各自的缺陷,UV需在末端检测,易受干扰;RI不适合作梯度洗脱;ELSD灵敏度相对较低.随着对该类化合物的深入研究,发现银杏内酯提取物中尚有一些微量成分,用这些检测方法不足以获得较好的信号响应,本实验以质谱作为检测器,获得了较高的检测灵敏度,结合UV和MS提供的光谱信息,有利于分析鉴别微量成分.  相似文献   

8.
银杏叶黄酮类化合物的提取分离Ⅰ.银杏黄酮化合物的提取   总被引:16,自引:1,他引:15  
银杏叶为银杏科银杏属植物银杏(Ginkgo biloba L.)的叶子,银杏在植物学和化学上占有重要地位。据《本草纲目》记载,银杏果具有敛肺平喘,止遗尿,白带作用,近年来,国内外学者对银杏提取物(GBE)进行了大量的研究,发现其主要药用成分之一为黄酮类化合物,以银杏 叶为原料提取制成的药物,用于对心血管,脑血管,动脉硬化,高血压等疾病的治疗,有其他药物不能达到的特殊疗效^[1-4]。另外,银杏制剂长期服用几乎没有毒副作用,银杏叶制品还可用于生物农药,保健食品,化妆品等方面,如何从银杏叶中提取有效成分有研究的关键。银杏叶黄酮化合物的提取包括银杏叶黄酮化合物的浸取和浸出液的富集分离两大部分。本文主要讨论银杏叶黄酮类化合物的浸取。  相似文献   

9.
研究了银杏叶提取物中5种银杏内酯含量的方法。外标法宣反相Symmetry-C18柱,流动相为甲醇-水;示差折光检测器。线形范围为0.02~0.40g/L,r=0.9814~0.9934,方法的回收率和相对标准偏差分别在93.2%~97.4%和1.27%~2.68%(n=15)之间,5种银杏内酯的检测限在2.07~3.98mg/L之间。本法简便、准确、重现性好,适宜于生产和工艺研究的质量控制。  相似文献   

10.
采用高频感应炉燃烧–红外吸收法测定银杏叶、银杏果肉、银杏壳和银杏仁中的硫含量。样品以艾士卡试剂为熔融剂,在800℃马弗炉内熔融1 h,冷却后测定硫含量。硫的质量分数在0.40%~4.00%范围内与吸收峰面积呈良好的线性关系,线性相关系数为0.990 4,检出限为0.000 9%。测定结果的相对标准偏差为4.04%(n=11),平均加标回收率为101.03%。将红外吸收法与电感耦合等离子体原子发射光谱法及硫酸钡重量法进行比对试验,3种方法测定结果相一致。利用该方法测定了不同区域银杏叶中硫的含量,结果表明,风景区和居民区银杏叶干燥基全硫的含量较低,重工业区硫含量较高。对同一地区的银杏果肉、银杏壳、银杏仁中干燥基全硫的含量进行比较,结果表明银杏果肉硫含量最高,银杏壳次之,银杏仁最低。该方法灵敏度高,重现性好,可用于银杏及银杏叶中硫含量的准确测定。  相似文献   

11.
GinkgoisakindoftraditionalChineseherbswhichhadbeenusedfordiseasetreatmentevensince5000yearsagoinChina.Inmodernmedicine,gingkohasbeentakenasamedicineseriouslyduetothefactthatitcanbeusedtotreatalotofdiseasessuchasasthmaandtracheitis.Pharmacologicalscreeni…  相似文献   

12.
Microphysiometry was used to evaluate the effects of terpene trilactone and flavonoid constituents of Ginkgo biloba on human platelet‐activating‐factor receptor (PAFR). Inhibition of the platelet‐activating factor response by terpene trilactones was confirmed using this functional assay. Ginkgolide B (GB) and 10‐O‐benzyl‐GB showed the strongest inhibition (81 and 93%, resp.) of the PAFR response, while the flavonoids rutin, quercetin, and kaempferol showed negligible response inhibition. G. biloba extract mixtures were also tested, and results indicate possible synergistic effects among various components.  相似文献   

13.
Ginkgolides from the Ginkgo biloba tree are diterpenes with a cage structure consisting of six five-membered rings and a unique tBu group. They exert a variety of biological properties. In addition to being antagonists of the platelet activating factor receptor (PAFR), it has recently been shown that native ginkgolides are potent and selective antagonists of the inhibitory glycine receptor. Forty new ginkgolide derivatives have been prepared in good to high yields on milligram scales and investigated for their antagonistic properties at homomeric alpha 1 glycine receptors, thus providing the first structure-activity relationship study of ginkgolides at glycine receptors. A high-throughput screening assay showed that native ginkgolide C was the most potent ligand, and that manipulation of any of the hydroxyl groups led to loss of activity at alpha 1 glycine receptors.  相似文献   

14.
LC-ESI-MS Determination of Bilobalide and Ginkgolides in Canine Plasma   总被引:1,自引:0,他引:1  
A sensitive and selective method using liquid chromatography with electrospray ionization mass spectrometric detection was developed for the quantification of bilobalide and ginkgolides in canine plasma. The analytes were extracted with diethyl ether-dichloromethane-isopropanol (6:3:1, v/v) after spiking the samples with daidzein (internal standard). The lower limit of quantification (LLOQ) of the method was 2.5 μg L−1 for ginkgolide B and 10.0 μg L−1 for bilabolide, ginkgolide A and ginkgolide C. The accuracy of the method was within 15% of the actual values over a wide range of plasma concentrations. The intra-day and inter-day precision was better than 15% (R.S.D.). Finally, the LC-ESI-MS method was successfully applied to study the pharmacokinetics of ginkgolides and bilabolide after administration of Ginkgo biloba extracts to dogs.  相似文献   

15.
Protocols for selective acetylation of the hydroxyl groups of ginkgolide C have been developed. These acetylations have given rise to various ginkgolide C acetates and iso-ginkgolide C acetates, the latter having a rearranged skeleton resulting from translactonization. These acetyl derivatives, as well as ginkgolides A and B acetates have been investigated for their ability to bind to a cloned platelet-activating factor (PAF) receptor.  相似文献   

16.
17.
The interpretation of 1H‐NMR chemical shifts, coupling constants, and coefficients of temperature dependence (δ(OH), J(H,OH), and Δδ(OH)/ΔT values) evidences that, in (D6)DMSO solution, the signal of an OH group involved as donor in an intramolecular H‐bond to a hydroxy or alkoxy group is shifted upfield, whereas the signal of an OH group acting as acceptor of an intramolecular H‐bond and as donor in an intermolecular H‐bond to (D6)DMSO is shifted downfield. The relative strength of the intramolecular H‐bond depends on co‐operativity and on the acidity of OH groups. The acidity of OH groups is enhanced when they are in an antiparallel orientation to a C−O bond. A comparison of the 1H‐NMR spectra of alcohols in CDCl3 and (D6)DMSO allows discrimination between weak and strong intramolecular H‐bonds. Consideration of IR spectra (CHCl3 or CH2Cl2) shows that the rule according to which the downfield shift of δ(OH) for H‐bonded alcohols in CDCl3 parallels the strength of the H‐bond is valid only for alcohols forming strong intramolecular H‐bonds. The combined analysis of J(H,OH) and δ(OH) values is illustrated by the interpretation of the spectra of the epoxyalcohols 14 and 15 (Fig. 3). H‐Bonding of hexopyranoses, hexulopyranoses, alkyl hexopyranosides, alkyl 4,6‐O‐benzylidenehexopyranosides, levoglucosans, and inositols in (D6)DMSO was investigated. Fully solvated non‐anomeric equatorial OH groups lacking a vicinal axial OR group (R=H or alkyl, or (alkoxy)alkyl) show characteristic J(H,OH) values of 4.5 – 5.5 Hz and fully solvated non‐anomeric axial OH groups lacking an axial OR group in β‐position are characterized by J(H,OH) values of 4.2 – 4.4 Hz (Figs. 4 – 6). Non‐anomeric equatorial OH groups vicinal to an axial OR group are involved in a partial intramolecular H‐bond (J(H,OH)=5.4 – 7.4 Hz), whereas non‐anomeric equatorial OH groups vicinal to two axial OR form partial bifurcated H‐bonds (J(H,OH)=5.8 – 9.5 Hz). Non‐anomeric axial OH groups form partial intramolecular H‐bonds to a cis‐1.3‐diaxial alkoxy group (as in 29 and 41 : J(H,OH)=4.8 – 5.0 Hz). The persistence of such a H‐bond is enhanced when there is an additional H‐bond acceptor, such as the ring O‐atom ( 43 – 47 : J(H,OH)=5.6 – 7.6 Hz; 32 and 33 : 10.5 – 11.3 Hz). The (partial) intramolecular H‐bonds lead to an upfield shift (relative to the signal of a fully solvated OH in a similar surrounding) for the signal of the H‐donor. The shift may also be related to the signal of the fully solvated, equatorial HO−C(2), HO−C(3), and HO−C(4) of β‐D ‐glucopyranose ( 16 : 4.81 ppm) by using the following increments: −0.3 ppm for an axial OH group, 0.2 – 0.25 ppm for replacing a vicinal OH by an OR group, ca. 0.1 ppm for replacing another OH by an OR group, 0.2 ppm for an antiperiplanar C−O bond, −0.3 ppm if a vicinal OH group is (partially) H‐bonded to another OR group, and −0.4 to −0.6 for both OH groups of a vicinal diol moiety involved in (partial) divergent H‐bonds. Flip‐flop H‐bonds are observed between the diaxial HO−C(2) and HO−C(4) of the inositol 40 (J(H,OH)=6.4 Hz, δ(OH)=5.45 ppm) and levoglucosan ( 42 ; J(H,OH)=6.7 – 7.1 Hz, δ(OH)=4.76 – 4.83 ppm; bifurcated H‐bond); the former is completely persistent and the latter to ca. 40%. A persistent, unidirectional H‐bond C(1)−OH⋅⋅⋅O−C(10) is present in ginkgolide B and C, as evidenced by strongly different δ(OH) and Δδ(OH)/ΔT values for HO−C(1) and HO−C(10) (Fig. 9). In the absence of this H‐bond, HO−C(1) of 52 resonates 1.1 – 1.2 ppm downfield, while HO−C(10) of ginkgolide A and of 48 – 50 resonates 0.5 – 0.9 ppm upfield.  相似文献   

18.
用溶胶-凝胶法以磷钼酸(MPA)的镍盐溶液水解钛酸四丁酯制备了NiPMo/TiO2催化剂.使用ICP、 XRD、 TG-DTA、 IR、 TPD-MS和微反应技术研究了催化剂的化学组成、热稳定性、化学吸附性质和催化反应性能.杂多钼酸盐与TiO2通过O2-在TiO2表面发生了键合.在623 K下,杂多阴离子仍保持原有的Keggin结构.CO2在Lewis酸位Ni(Ⅱ)和Lewis碱位Ni-O-Mo的桥氧协同作用下生成CO2卧式吸附态Ni(Ⅱ)←O-(CO)←(O--Ni).丙烯有多种吸附态在催化剂上吸附.在563 K、 1 MPa和空速1500 h-1的反应条件下,丙烯的摩尔转化率为3.2%,产物MAA选择性为95%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号