首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The collisionless lifetime of a flourescent excited state of tetramethylethylene (TME) vapor when excited at 235 nm is 20.8±0.9 ns and the self-quenching rate constant is (2.97±0.01) × 10−10 cm3 molecule−1 s−1. The rate constants for quenching of TME vapor by O2, benzene. CCl4, Xe, N2 and CH4 are also repeated. In the vapor phase, the lifetime strongly depends on the excitation energy. The lifetime of liquid TME is 10±2 ns at 25±2°C.  相似文献   

2.
The reaction: F + HCl→ HF (v 3) + Cl (1), has been initiated by photolysing F2 using the fourth-harmonic output at 266 nm from a repetitively pulsed Nd: YAG laser By analysing the time-dependence of the HF(3,0) vibrational chemiluminescence, rate constants have been determined at (296 ± 5) K for reaction (1), k1 = (7.0 ± 0.5) × 10−12 cm3 molecule−1 s−1, and for the relaxation of HF(v = 3) by HCl, CO2, N2O, CO, N2 and O2: kHCl = (1.18 ±0.14) × 10−11 kCO2 = (1.04 ± 0. 13) × 10−12, kN2O = (1.41 ± 0.13) × 10−11 kCO = (2.9 ± 0.3) × (10−12, kN2 = (7.1 ± 0.6) × 10−14 and kO2 = (1.9 ± 0.6) × 10−14 cm3molecule−1s−1.  相似文献   

3.
The collisional quenching of electronically excited germanium atoms, Ge[4p2(1S0)], 2.029 eV above the 4p2(3P0) ground state, has been investigated by time-resolved atomic resonance absorption spectroscopy in the ultraviolet at λ = 274.04 nm [4d(1P10) ← 4p2(1S0)]. In contrast to previous investigations using the ‘single-shot mode’ at high energy, Ge(1S0) has been generated by the repetitive pulsed irradiation of Ge(CH3)4 in the presence of excess helium gas and added gases in a slow flow system, kinetically equivalent to a static system. This technique was originally developed for the study of Ge[4p2(1D2)] which had eluded direct quantitative kinetic study until recently. Absolute second-order rate constants obtained using signal averaging techniques from data capture of total digitised atomic decay profiles are reported for the removal of Ge(1S0) with the following gases (kR in cm3 molecule−1 s−1, 300 K): Xe, 7.1 ± 0.4 × 10−13; N2, 4.7 ± 0.6 × 10−12; O2, 3.6 ± 0.9 × 10−11; NO, 1.5 ± 0.3 × 10−11; CO, 3.4 ± 0.5 × 10−12; N2O, 4.5 ± 0.5 × 10−12; CO2, 1.1 ± 0.3 × 10−11; CH4, 1.7 ± 0.2 × 10−11; CF4, 4.8 ± 0.3 × 10−12; SF6, 9.5 ± 1.0 × 10−13; C2H4, 3.3 ± 0.1 × 10−10; C2H2, 2.9 ± 0.2 × 10−10; Ge(CH3)4, 5.4 ± 0.2 × 10−11. The results are compared with previous data for Ge(1S0) derived in the single-shot mode where there is general agreement though with some exceptions which are discussed. The present data are also compared with analogous quenching rate data for the collisional removal of the lower lying Ge[4p2(1D2)] state (0.883 eV), also characterized by signal averaging methods similar to that described here.  相似文献   

4.
The second-order rate constants of gas-phase Lu(2D3/2) with O2, N2O and CO2 from 348 to 573 K are reported. In all cases, the reactions are relatively fast with small barriers. The disappearance rates are independent of total pressure indicating bimolecular abstraction processes. The bimolecular rate constants (in molecule−1 cm3 s−1) are described in Arrhenius form by k(O2)=(2.3±0.4)×10−10exp(−3.1±0.7 kJmol−1/RT), k(N2O)=(2.2±0.4)×10−10exp(−7.1±0.8 kJmol−1/RT), k(CO2)=(2.0±0.6)×10−10exp(−7.6±1.3 kJmol−1/RT), where the uncertainties are ±2σ.  相似文献   

5.
The reactive Kr+F2 potential energy surface is probed by two-photon, laser-induced chemical bond formation during a Kr+F2 collision. This is compared with the pulsed laser excitation (two-photon) of Kr(2p9) followed by collision with F2 leading to the formation of KrF(B, C). In addition to reporting the excitation spectrum for the two-phonon-induced collision process, these techniques were used to determine quenching rate constants of Kr2F*. Quenching by Xe gives XeF(B, C) with rate constant (1.5±0.2)×10−10 cm3 s−1; the quenching rate constant for F2 is (1.5±0.2)×10−10 cm3 s−1, and the radiative lifetime of Kr2F* is 240±35 ns. The quenching rate constant for the coupled Kr(2p8) and Kr(2p9) levels by F2 is (13±2)×10−10 cm3 s−1.  相似文献   

6.
UV spectra and kinetics for the reactions of alkyl and alkylperoxy radicals from methyl tert-butyl ether (MTBE) were studied in 1 atm of SF6 by the pulse radiolysis-UV absorption technique. UV spectra for the radical mixtures were quantified from 215 to 340 nm. At 240 nm. σR = (2.6 ± 0.4) × 10−18 cm2 molecule−1 and σRO2 = (4.1 ± 0.6) × 10−18 cm2 molecule−1 (base e). The rate constant for the self-reaction of the alkyl radicals is (2.5 ± 1.1) × 10−11 cm3 molecule−1 s−1. The rate constants for reaction of the alkyl radicals with molecular oxygen and the alkylperoxy radicals with NO and NO2 are (9.1 ± 1.5) × 10−13, (4.3 ± 1.6) × 10−12 and (1.2 ± 0.3) × 10−11 cm3 molecule−1 s−1, respectively. The rate constants given above refer to reaction at the tert-butyl side of the molecule.  相似文献   

7.
This Letter reports the first kinetic study of 2-butoxy radicals to employ direct monitoring of the radical. The reactions of 2-butoxy with O2 and NO are investigated using laser-induced fluorescence (LIF). The Arrhenius expressions for the reactions of 2-butoxy with NO (k1) and O2 (k2) in the temperature range 223–311 K have been determined to be k1=(7.50±1.69)×10−12×exp((2.98±0.47) kJmol−1/RT) cm3 molecule−1 s−1 and k2=(1.33±0.43)×10−15×exp((5.48±0.69) kJmol−1/RT) cm3 molecule−1 s−1. No pressure dependence was found for the rate constants of the reaction of 2-butoxy with NO at 223 K between 50 and 175 Torr.  相似文献   

8.
Smog chamber/FTIR techniques were used to study the kinetics and mechanism of the reaction of Cl atoms with iodobenzene (C6H5I) in 20–700 Torr of N2, air, or O2 diluent at 296 K. The reaction proceeds with a rate constant k(Cl+C6H5I)=(3.3±0.7)×10−11 cm3 molecule−1 s−1 to give chlorobenzene (C6H5Cl) in a yield which is indistinguishable from 100%. The title reaction proceeds via a displacement mechanism (probably addition followed by elimination).  相似文献   

9.
The absolute absorption cross-sections of a recently discovered atmospheric gas, SF5CF3, have been measured at He I (21.22 eV) and Ne I (16.64 and 16.82 eV) photon energies using a VUV discharge lamp and a double ion chamber method. Absorption cross-sections of (9.52 ± 0.95) × 10−17 cm2 (He I) and (8.79 ± 0.88) × 10−17 cm2 (Ne I) were obtained and compared with data from other studies. The consequences for the cross-section at the hydrogen Lyman- energy (10.20 eV) are discussed.  相似文献   

10.
NH2 profiles were measured in a discharge flow reactor at ambient temperature by monitoring reactants and products with an electron impact mass spectrometer. At the low pressures used (0.7 and 1.0 mbar) the gas-phase self-reaction is dominated by a ‘bimolecular’ H2-eliminating exit channel with a rate coefficient of k3b(300 K) = (1.3 ± 0.5) × 10−12 cm3 molecule−1 s−1 and leading to N2H2 + H2 or NNH2 + H2. Although the wall loss for NH2 radicals is relatively small (kw ≈ 6–14 s−1), the contribution to the overall NH2 decay is important due to the relatively slow gas-phase reaction. The heterogeneous reaction yields N2H4 molecules.  相似文献   

11.
The principal route for decay of Hg 6s6p(3P1) in xenon is shown to be bimolecular deactivation to the mercury ground state, with rate coefficient 9.1 × 10−13 cm3 molecule−1 s−1; relaxation to the 3P0 state plays a negligible role. The equilibrium constant of the reaction Hg(3P1) + Xe HgXe(A 3O+), has been recorded as 1.73 × 10−20 cm3 molecule−1 at 293 K.  相似文献   

12.
Recent results (post-1990) on the synthesis and structures of bis(trimethylsilyl)methyls M(CHR2)m (R = SiMe3) of metals and metalloids M are described, including those of the crystalline lipophilic [Na(μ-CHR2)], [Rb(μ-CHR2)(PMDETA)]2, K4(CHR2)4(PMDETA)2, [Mg(CHR2)(μ-CHR2)], P(CHR2)2 (gaseous) and P2(CHR2)4, [Yb(CHR2)2(OEt2)2] and [{Yb(CR3)(μ-OEt)(OEt2)}2]; earlier information on other M(CHR2)m complexes and some of their adducts is tabulated. Treatment of M(CHR2) (M = Li or K) with four different nitriles gave the X-ray-characterized azaallyls or β-diketinimates , and (LL′ = N(R)C(tBu)CHR, L′L′ = N(R)C(Ph)C(H)C(Ph)NR, LL″ = N(R)C(Ph)NC(H)C(Ph)CHR, R = SiMe3 and Ar = C6H3Me2-2,5). The two lithium reagents were convenient sources of other metal azaallyls or β-diketinimates, including those of K, Co(II), Zr(IV), Sn(IV), Yb(II), Hf(IV) and U(VI)/U(III). Complexes having one or more of the bulky ligands [LL′], [L′L′], [LL], [LL″], [L″L], [LL] and [{N(R)C(tBu)CH}2C6H4-2]2− are described and characterized (LL = N(H)C(Ph)C(H)C(Ph)NH, L″L = N(R)C(tBu)C(H)C(Ph)NR, LL = N(R)C(tBu)CHPh). Among the features of interest are (i) the contrasting tetrahedral or square-planar geometry for and , respectively, and (ii) olefin-polymerization catalytic activity of some of the zirconium(IV) chlorides.  相似文献   

13.
The rate coefficients for the reactions of C2H and C2D with O2 have been measured in the temperature range 295 K T 700 K. Both reactions show a slightly negative temperature dependence in this temperature range, with kC2H+O2 = (3.15 ± 0.04) × 10−11 (T/295 K)−(0.16 ± 0.02) cm3 molecule−1 s−1. The kinetic isotope effect is kC2H/kC2D = 1.04 ± 0.03 and is constant with temperature to within experimental error. The temperature dependence and the C2H + O2 kinetic isotope effect are consistent with a capture-limited metathesis reaction, and suggest that formation of the initial HCCOO adduct is rate-limiting.  相似文献   

14.
A laser pulse-and-probe method has been used to determine the nascent vibrational populations in NO(v=0–4) and O2(v=6–11) formed in the thermal reaction: O(3P) + NO2 → O2(v) + NO(v). A frequency-tripled Nd: YAG laser is used to photolyse NO2, diluted tenfold in Ar, and laser-induced fluorescence spectroscopy in the NO A 2Σ+-X 2Π and O2 B 3Σu -X 3Σg electronic band system is used both to follow the kinetics of individual vibrational states and to determine the nascent vibrational distributions. The majority of the NO product is formed in v = 0 and the average vibrational yield is ≈ 4.6%. The O2 populations fall monotonically from v = 6 to 11 in a distribution close to what is expected on prior grounds. Based on a surprisal analysis, the average vibrational energy yield in O2 is ≈ 26%. The nature of the reaction dynamics is discussed.  相似文献   

15.
New ester salts [R3NH]+[F5SC(SO2F)C(O)OR′] where RH, CH3CH2 and R′CH3,(CH3)2CH have been prepared from corresponding esters and amines. The sodiumsalt Na[F5SC(SO2F)C(O)OCH(CH3)2] was used to prepare the following -substitutedderivatives: SF5CX(SO2F)C(O)OCH(CH3)2, XBr, Cl. The crystal structure of[(C2H5)3NH]+[F5SC(SO2F)C(O)OCH3] was determined and is monoclinic: P21/n;a=8.758(2) Å, b=9.645(2) Å and c=19.167(4) Å; β=97.92(3)°; V=1603.6 Å3; Z=4.  相似文献   

16.
我国正处于“碳达峰、碳中和”的关键时期,准确认识我国温室气体浓度时空格局以及变化对于评估“碳达峰”和“碳中和”行动成效非常重要。当前我国近地面温室气体高精度监测主要依赖进口的光学监测主机,单台仪器成本高且监测要素有限。为此,该研究基于传统的气相色谱法,自主设计了一套三通道气相色谱分析系统,在单台仪器上实现了5种主要长寿命温室气体(CH_(4)、CO、CO_(2)、N_(2)O和SF_(6))的高精度监测。对该系统的精密度、线性响应情况和准确度进行的针对性测试实验表明系统检测性能满足世界气象组织/全球大气观测(WMO/GAW)质控标准。针对环境浓度的CH_(4)、CO、CO_(2)、N_(2)O和SF_(6)的连续分析精密度分别达0.08%、1.90%、0.05%、0.08%、0.66%。准确度测试中,5种气体(CH_(4)、CO、CO_(2)、N_(2)O和SF_(6))使用回归方程计算所得值与标称摩尔分数间的偏差分别达0.15×10-9、0.20×10-9、0.37×10-6、0.35×10-9、0.02×10-12(摩尔分数),CH_(4)、CO、CO_(2)、N_(2)O和SF_(6)仪器响应值与标称摩尔分数的线性拟合相关系数(R2)均为0.9999,线性拟合残差和准确度基本达到WMO/GAW拓展质控目标。该系统对杭州城区大气温室气体在线连续监测结果显示,2021年5~7月期间大气CH_(4)、CO、CO_(2)和N_(2)O呈明显的日变化特征,主要受人为活动影响。综合测试和试运行结果表明,该研发系统具备良好的精密度、准确度、线性和稳定性,与目前国内广泛进口的仪器相比,具有技术自主可控、运行成本更低、自动化水平更高等优势,能满足多种温室气体在线监测研究的需求。  相似文献   

17.
Pulses from a mechanically chopped CO-laser were used to optically pump the first vibrational level of NO molecules in their fundamental band near 5.3 μm. The population of NO (υ = 1) was followed by measuring the resonance fluorescence of NO-γ-bands from a microwave discharge lamp in the UV region. Analysis of the first order decays of NO(υ = 1) following the excitation pulses yielded rate constants for V---T and V---V energy transfer processes in collisions of NO(υ = 1) with ground state NO and added gas molecules He, Ne, Ar, Kr, Xe, H2, HD, D2, N2, O2 and N2O.  相似文献   

18.
The oxidation reaction of 2-aminophenol (OAP) to 2-aminophenoxazin-3-one (APX) initiated by 2,2,6,6-tetramethyl-1-piperidinyloxyl (TEMPO) has been investigated in methanol at ambient temperature. The oxidation of OAP was followed by electronic spectroscopy and the rate constants were determined according to the rate law −d[OAP]/dt=kobs[OAP][TEMPO]. The rate constant, activation enthalpy and entropy at 298 K are as follows: kobs (dm3 mol−1 s−1)=(1.49±0.02)×10−4, Ea=18±5 kJ mol−1, ΔH=15±4 kJ mol−1, ΔS=−82±17 J mol−1 K−1. The results of oxidation of OAP show that the formation of 2-aminophenoxyl radical is the key step in the activation process of the substrate.  相似文献   

19.
The Schiff base 2-pyridine–carboxaldehyde 4-dimethylaminobenzoylhydrazone (HL, 1) was prepared by reacting 2-pyridine–carboxaldehyde and 4-dimethylaminobenzoylhydrazine in a 1:1 molar ratio in methanol. Reaction of HL (1) with Cu(O2CCH3)2·H2O (in a 1:1 molar ratio) in methanol afforded a dinuclear copper(II) complex, [Cu2(μ-O2CCH3)2L′2]·2H2O (2). The azomethine functionality (---CH=N---) of 1 is converted to imidate (---C(OMe)=N---) in the complexed ligand L′. Molecular structures of both 1 and 2 were determined by X-ray crystallographic studies. The dinuclear molecule of 2 is centrosymmetric and contains two monoatomic bridging acetate groups. Each copper(II) centre is in a square-pyramidal N2O3 coordination sphere. The ligand, L′ coordinates the metal ion via the pyridine-N, the imidate-N, and the deprotonated amide-O atoms. One of the acetate oxygen atoms completes the N2O2 square-plane. The oxygen of the symmetry-related acetate fills the apical coordination site. Structural parameters are consistent with both copper ions being in a +2 oxidation state. The room temperature magnetic moment is 1.89 μB (per Cu). In powder phase the complex displays an axial EPR spectrum at 298 K. The complex is nonconducting in methanol solution. The electronic spectrum shows a ligand field absorption at 680 nm and charge transfer bands in the range 426–215 nm.  相似文献   

20.
X-Ray crystallographic studies on [NEt4]2[Cr2[(O2CC2H5)4(NCS)2] show that the Cr–Cr separation (2.467Å) in the dinuclear anion is one of the longest known. The thiocyanato groups are N-bonded, and the results emphasize the known sensitivity of the quadruple Cr–Cr bond to the nature of the axial ligands. The compound crystallises in the tetragonal space group P4/mnc with two molecules per unit cell, the dimensions of which are a = b = 9.785(1), c = 21.186(2) Å. Magnetic investigations from room to liquid nitrogen temperature on the tetra-μ-propionato complex and on [NMe4]2 [Cr2(O2CCH3)4(NCS)2] show that both complexes have been obtained free from paramagnetic chromium(III) impurities. Their weak paramagnetic susceptibilities (Xcr is approx. 200 x 10−6 cm3 mol−1 at 295 K and 50 x 10−6cm3mol−1 at 90 K) are inherent, and are ascribed to temperature independent paramagnetism at low temperature plus para-magnetism arising from slight population of the triplet state (2J 700 cm−1, g = 2, N = 50 x 10−6cm3mol−1) at higher temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号