首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The effects of pressure, solvent on the intramolecular spin exchange of biradicals having two nitroxide fragments linked by a long flexible chain were studied by means of highpressure EPR technique. It was found that the intramolecular exchange interaction between nitroxides of biradical took place through the direct contact between them. By analyzing the observed EPR spectra, we have estimated the ratio(Τinout) value of the average lifetime of the radical fragments inside a cage(Τin) to that outside the cage(Τout). The Τinout values decreased with decreasing temperature, increasing pressure. The results suggest that the nearly cyclic conformation in a cage is favorable in solution. Fur ther, the rotational correlation time of individual nitroxide was estimated from the anisotropic EPR signal,, the information on the segmental motion of the nitroxide group in biradical was obtained.  相似文献   

2.
Echo detected electron paramagnetic resonance (EPR) study of orientational molecular motion of nitroxide spin probes in glassy solvents was performed by evaluating the anisotropic transverse relaxation rate 1/T(2) at different positions of the EPR spectrum. Experiments were done on nitroxides of different sizes and shapes, in different solvent glasses, with different deuteration degree, and at different temperatures. We found that the properties of the solvent glass have a much stronger impact on the relaxation rate than the size and shape of the nitroxide have. We concluded that the anisotropic relaxation is induced by reordering of the solvent cage and not by small angle fluctuations of the nitroxide in the cage or intramolecular motion of nitroxide.  相似文献   

3.
Complexation of beta-cyclodextrin with flexible nitroxide biradicals linked by a polyethylene glycol chain was monitored by EPR spectroscopy. The EPR spectra of the uncomplexed biradicals show an exchange interaction due to the flexibility of the polyethylene glycol chain. Complexation with cyclodextrin leads to the disappearance of the exchange interaction in the EPR spectra. The complexation can be reversed by the addition of competing guests (e.g., adamantane derivatives). At high concentration, the inclusion complexes precipitate, and differential scanning calorimetry (DSC) of the precipitates proved the formation of complexes. Elemental analysis data revealed that the complexes contain several cyclodextrin units per biradical but that the composition was not stoichiometric.  相似文献   

4.
Spiro-substituted nitroxyl biradicals are widely used as reagents for dynamic nuclear polarization (DNP), which is especially important for biopolymer research. The main criterion for their applicability as polarizing agents is the value of the spin–spin exchange interaction parameter (J), which can vary considerably when different couplers are employed that link the radical moieties. This paper describes a study on biradicals, with a ferrocene-1,1′-diyl-substituted 1,3-diazetidine-2,4-diimine coupler, that have never been used before as DNP agents. We observed a substantial difference in the temperature dependence between Electron Paramagnetic Resonance (EPR) spectra of biradicals carrying either methyl or spirocyclohexane substituents and explain the difference using Density Functional Theory (DFT) calculation results. It was shown that the replacement of methyl groups by spirocycles near the N-O group leads to an increase in the contribution of conformers having J ≈ 0. The DNP gain observed for the biradicals with methyl substituents is three times higher than that for the spiro-substituted nitroxyl biradicals and is inversely proportional to the contribution of biradicals manifesting the negligible exchange interaction. The effects of nucleophiles and substituents in the nitroxide biradicals on the ring-opening reaction of 1,3-diazetidine and the influence of the ring opening on the exchange interaction were also investigated. It was found that in contrast to the methyl-substituted nitroxide biradical (where we observed the ring-opening reaction upon the addition of amines), the ring opening does not occur in the spiro-substituted biradical owing to a steric barrier created by the bulky cyclohexyl substituents.  相似文献   

5.
A nitronyl-nitroxide (NIT) biradical D-NIT2 linked by a single double bond has been engineered and investigated in the solid state by a combination of X-ray diffraction, magnetic susceptibility measurement, EPR, as well as solid-state (1)H and (13)C NMR spectroscopies, and experimental electron density distribution. All techniques reveal that a double bond is a very efficient coupling unit for exchange interactions between two radical moieties. Using a Bleaney-Bowers model dimer (H = -JS(1)S(2)), a singlet-triplet energy gap of J = -460 K was found with the singlet state being the ground state. This very strong intramolecular interaction was confirmed by EPR measurements in CH(2)Cl(2) solution (6 10(-4) M) or dispersed in a polymer matrix at low concentration. In keeping with these unusual interactions, solid-state NMR signals of the biradical were found to be considerably less shifted than those found for related monoradicals. Temperature-dependent solid-state (13)C NMR spectra of D-NIT2 confirmed the very strong intramolecular coupling constant (J = -504 K). The electron density distribution of D-NIT2 was measured by high resolution X-ray diffraction, which also revealed that this biradical is an ideally conjugated system. The in-depth characterization includes the deformation maps and the observed electron density ellipticities, which exhibit a pronounced sigma-pi character of the O-N-C=C-N-O cores in keeping with an efficient electronic delocalization along the alkene spacer.  相似文献   

6.
Calix[4]arenes constrained to the 1,3-alternate conformation and functionalized at the upper rim with four and two tert-butylnitroxides have been synthesized and characterized by X-ray crystallography, magnetic resonance (EPR and (1)H NMR) spectroscopy, and magnetic studies. The 1,3-alternate nitroxide tetraradical and diradical provide unique polyradical scaffolds for dissection of the through-bond and through-space intramolecular exchange couplings. In addition, detailed magnetic studies of the previously reported calix[4]arene nitroxide tetraradical, which possesses cone conformation in solution, reveal conformational dependence of exchange coupling. Through-bond coupling between the adjacent nitroxide radicals is mediated by the nitroxide-m-phenylene-CH(2)-m-phenylene-nitroxide coupling pathway, and through-space coupling is found between the diagonal nitroxide radicals at the conformationally constrained N...N distance of 5-6 A. Magnetic studies of the calix[4]arene polyradical scaffolds in frozen solutions show that the through-bond exchange coupling in the 1,3-alternate calix[4]arene tetraradical is antiferromagnetic, while that in cone calix[4]arene tetraradical is ferromagnetic. The through-space exchange couplings are antiferromagnetic in both cone and 1,3-alternate calix[4]arene tetraradical, as well as in the 1,3-alternate calix[4]arene diradical. The exchange coupling constants (|J/k|) are of the order of 1 K.  相似文献   

7.
The exchange interaction parameters were calculated and the spin density distribution over the organic skeleton of the 1,3,5,7-tetramethyl-2,6-diazaadamantane N,N’-dioxyl biradical was studied based on the results of quantum chemical modeling of the biradical structure by the DFT method using various hybrid functionals (UB3LYP, LC-wPBE, UCAM-B3LYP, UHSEH1PBE) with the 6-311++G(2d,2p) basis set and by the UHF method with the same basis set. The characteristics of the direct orbital overlap between the N atoms of the two nitroxide groups were determined. The values of the J constant, obtained using different calculation methods, were found to be similar to each other. It was established that there is ferromagnetic exchange interaction between the radical sites in the system in question, which occurs predominantly according to the spin polarization mechanism in the 2,6-diazaadamantane core, and the various spin density transfer pathways through the C atoms of the organic skeleton were found to be nonequivalent. The direct overlap of the upper singly-occupied МОs with localization on the nitroxide groups led to a noticeable additional contribution of the antiferromagnetic exchange interaction. Despite the latter factor, the total contribution of these two mechanisms (spin polarization and direct through-space exchange) resulted in the triplet ground state in the biradical studied.  相似文献   

8.
Spin alignments in heterospin chains are examined from numerical calculations of model spin Hamiltonians. The Hamiltonians of the heterospin chains mimic an open-shell molecular assemblage composed of an organic biradical in a singlet (S = 0) ground state and a doublet (S = 1/2) monoradical, which are coupled by intermolecular ferromagnetic exchange interactions. It is found from numerical calculations of the spin Hamiltonians that the spin value S2 of the ground-state singlet biradical embedded in the exchange-coupled assemblage deviates from zero and contributes to the bulk magnetization. The alternating chain is found to have two kinds of ground spin states, a high- and a low-spin state. All the spins are parallel to each other in the high-spin state, which is characterized by the spin correlation function of (S(i).S(j)) = 0.25. On the other hand, the spin alignment in the low-spin state is found to be dependent on the topology of the intermolecular exchange interactions. The energy preference of the two states depends on the relative amplitude of the exchange interactions in the chain. The intermolecular ferromagnetic couplings are competing in the ground-state singlet biradical with the intramolecular antiferromagnetic interaction. The appearance of the two kinds of ground states is attributed to a quantum spin frustration effect inherent in the triangular motif of the competing interactions. Magnetic properties of a zigzag chain complex composed of a nitronyl nitroxide biradical with a singlet ground state and Cu(hfac)2 are examined on the basis of the theoretical calculations. The vanishing magnetic moments, or the product of susceptibility and temperature chiT, at low temperatures observed for the complex are consistent with those of the low-spin state predicted in the theoretical calculations.  相似文献   

9.
The intramolecular dynamics of a silicon biradical complex witho-semiquinone ligands was studied in a frozen toluene solution. Analysis of the broadening and shifts of the canonical components in the ESR spectrum of this biradical allows one to detect the abrupt reorientation of the magnetic axes due to intramolecular single bond-unpaired electron exchange. The frequencies of chemical exchange at low temperatures were estimated. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 1726–1730, October, 1993.  相似文献   

10.
Hong J  Zhuang Y  Ji X  Guo X 《The Analyst》2011,136(12):2464-2470
We developed a novel spin-labeled terbium complex Tb(3+)/cs124-DTPA-TEMPO (1) by covalently labeling a nitroxide radical on the terbium complex for monitoring free radicals of various areas. This lanthanide complex probe shows a high EPR signal which resulted from the nitroxide radical moiety, and is weakly luminescent which resulted from the intramolecular quenching effect of the nitroxide radical on sensitised terbium luminescence. The intensity of both the EPR and luminescence can be modulated by eliminating the paramagnetism of the nitroxide radical through recognition of a carbon-centered radical analyte and thus gives a quantification of the analyte. We have preliminarily applied this probe in the luminescent detection of model carbon-centered radicals and hydroxyl radicals (·OH). This probe is water-soluble and contains lanthanide-luminescence properties, favorable for the time-resolved luminescence technique. The investigation of the intramolecular quenching process has showed that the labeled nitroxide radical quenches multiple excited states of the terbium complex, resulting in highly efficient quenching of terbium luminescence. This probe is the first example of intramolecular modulation of lanthanide luminescence by a nitroxide radical.  相似文献   

11.
The EPR spectra of several nitroxide biradicals derived from substituted bis(hydroxy-ureas) have been determined. The main differences in these spectra arose dur to intramolecular interaction of the nitroxide groups. Interaction was only observed for the case where the nitroxide group was bonded to an aliphatic group.  相似文献   

12.
Biradical spin probes can provide detailed information about the distances between molecules/regions of molecules because the through-space coupling of radical centres, characterised by J, is strongly distance dependent. However, if the system can adopt multiple configurations, as is common in supramolecular complexes, the shape of the EPR spectrum is influenced not only by J but also the rate of exchange between different states. In practice, it is often hard to separate these variables and as a result, the effect of the latter is sometimes overlooked. To demonstrate this challenge unequivocally we synthesised rotaxane biradicals containing nitronyl nitroxide units at the termini of their axles. The rotaxanes exchange between the available biradical conformations more slowly than the corresponding non-interlocked axles but, despite this, in some cases, the EPR spectra of the axle and rotaxane remain remarkably similar. Detailed analysis allowed us to demonstrate that the similar EPR spectral shapes result from different combinations of J and rates of conformational interconversion, a phenomenon suggested theoretically more than 50 years ago. This work reinforces the idea that thorough analysis must be performed when interpreting the spectra of biradicals employed as spin probes in solution.

Using a rotaxane biradical, we unambiguously demonstrate the need consider both J and rate of conformational interconversion carefully when interpreting the spectra of such systems when they are employed as spin probes in solution.  相似文献   

13.
《Polyhedron》2007,26(9-11):1890-1894
We have designed and synthesized new biradicals of p-phenylene-bis(nitronyl nitroxide) substituted with two methoxy groups at 2,3- (2) and 2,5-positions (3). A parent biradical p-phenylene-bis(nitronyl nitroxide) (1) has intramolecular antiferromagnetic exchange interaction of 2J/kB = −104 K  −106 K with a torsion angle of 28.5° between the phenyl and the imidazole rings of nitronyl nitroxide. X-ray crystal structure analysis shows that the bulky substituents in 2 and 3 give large torsion angles of 65–70°. The larger torsion angles should weaken the magnitude of intramolecular exchange interactions, which is attributed to a decrease in π-conjugation over the p-phenylene and the radical groups. Magnetic susceptibility measurements indicate that the intramolecular exchange interactions in 2 and 3 are severely weakened to about 6% of that in 1, 2J/kB = −6 K  −8 K. The relation between the torsion angle and the intramolecular exchange interaction is consistent with DFT calculations. The ground-state singlet biradicals with suppressed intramolecular exchange interactions can be a building block for exotic exchange-coupled spin systems as predicted in our theoretical studies.  相似文献   

14.
A series of nitronyl nitroxide (NN) diradicals with linear conjugated couplers and another series with aromatic couplers have been investigated by the broken-symmetry (BS) DFT approach. The overlap integral between the magnetically active orbitals in the BS state has been explicitly computed and used for the evaluation of the magnetic exchange coupling constant (J). The calculated J values are in very good agreement with the observed values in the literature. The magnitude of J depends on the length of the coupler as well as the conformation of the radical units. The aromaticity of the spacer decreases the strength of the exchange coupling constant. The SOMO-SOMO energy splitting analysis, where SOMO stands for the singly occupied molecular orbital, and the calculation of electron paramagnetic resonance (EPR) parameters have also been carried out. The computed hyperfine coupling constants support the intramolecular magnetic interactions. The nature of magnetic exchange coupling constant can also be predicted from the shape of the SOMOs as well as the spin alternation rule in the unrestricted Hartree-Fock (UHF) treatment. It is found that pi-conjugation along with the spin-polarization plays the major role in controlling the magnitude and sign of the coupling constant.  相似文献   

15.
Differences in O-H bond dissociation enthalpies (ΔBDEs) between the hydroxylamine of (15)N-labeled TEMPONE and 10 N,N-di-tert-alkyl hydroxylamines were determined by EPR. These ΔBDEs, together with the g and a(N) values of the derived nitroxide radicals, are discussed in relation to various geometric, intramolecular dipole/dipole, and steric effects and in relation to the results from DFT calculations. We find that dipole/dipole interactions are the dominant factors in dictating a(N) values and O-H BDEs in all of these structurally similar nitroxides and hydroxylamines, respectively. The importance of including the Boltzmann distribution of conformations for each nitroxide in the a(N) calculations is emphasized.  相似文献   

16.
This contribution reports the design and synthesis of a series of spin-labeled charge acceptors to produce three-spin systems of "radical ion/biradical ion" type in X-irradiated alkane liquids. This opens the way to study spin triads in experimental conditions, in which short-lived radical ion pairs are conventionally studied, thus offering optically detected techniques such as magneto-resonance OD ESR and level-crossing MARY spectroscopy. The structure of the synthesized 2-imidazoline-1-oxyl derivatives is A-Sp-R, where A is a positive or negative charge acceptor, R is a stable radical, and Sp is a hydrocarbon bridge. The set of 20+ compounds represent a convenient tool to construct experimental three-spin systems with various properties, e.g. with the "third" spin introduced into one or the other partner of the radical ion pair. The degree of exchange coupling between the two paramagnetic fragments in the biradical ion has been demonstrated to strongly depend on the type of the radical fragment R and the structure of the bridge Sp. As a result, a series of acceptors with systematically reduced exchange interaction has been synthesized, and optimal systems for the observation of low magnetic field effect have been found. In the most favorable case, an OD ESR signal from a spin triad living as short as ca. 100 ns has been registered as a single unresolved line. The exchange integral for this biradical anion (9) was estimated from OD ESR and ESR experiments to be ca. 10(3) G by the order of magnitude, which is much greater than the hyperfine couplings in the biradical ion but much smaller than the thermal energy kT.  相似文献   

17.
As a novel molecular designing for genuinely organic molecule-based ferrimagnets, we have proposed a strategy of "single-component ferrimagnetics". When a pi-biradical with an S = 1 ground state and a pi-monoradical with S = (1)/(2) are united by sigma-bonds, the pi-conjugation between the biradical and the monoradical moieties should be truncated in the resultant triradical. This gives magnetic degrees of freedom for both S = 1 and (1)/(2) in the single molecule, serving as a building block for organic molecule-based ferrimagnets under favorable conditions (single-component ferrimagnetics). We have designed and synthesized a triradical, 3-(1'-oxyl-3'-oxido-4',4',5',5'-tetramethylimidazolin-2-yl)benzoic acid 2,4-bis(1' '-oxyl-3' '-oxido-4' ',4' ',5' ',5' '-tetramethylimidazolin-2-yl)phenyl ester (4), as a model compound for the novel approach to genuinely organic ferrimagnets. In the triradical 4, a m-phenylene-bis(nitronyl nitroxide) biradical with a triplet (S = 1) ground state is united with a phenyl nitronyl nitroxide monoradical (S = (1)/(2)) by an ester coupler. Solution-phase ESR spectra from 4 exhibited a complex hyperfine splitting due to (14)N and (1)H nuclei. The analysis of the hyperfine structure based on perturbation calculations has revealed that the exchange interaction within the biradical moiety is much larger than those between the biradical and the monoradical moieties and the magnetic degrees of freedom for both S = 1 and (1)/(2) are retained in 4. An X-ray crystal structure analysis showed that the triradical molecules are arranged in a one-dimensional molecular chain in the crystal. The magnetic susceptibility in a crystalline solid state is consistent with the crystal structure.  相似文献   

18.
This communication describes the use of a methanethiosulfonate derivative of an imidazolidine nitroxide, methanethiosulfonic acid S-(1-oxyl-2,2,3,5,5-pentamethyl-imidazolidin-4-ylmethyl) ester, IMTSL, for site-directed pKa determination of peptides by electron paramagnetic resonance. This spin label is covalently attached to the thiol group of unique cysteines incorporated into peptide structures. The tertiary amine nitrogen N3 of the label readily participates in proton exchange reactions, which are monitored through changes in EPR spectra of nitroxide moiety. Using EPR at 95 GHz (W-band) isotropic magnetic parameters of this nitroxide, both Aiso and giso, were calibrated in solvents of different polarity and pH. Two different linear correlations between Aiso and giso for acidic and basic forms of IMTSL were observed, making it possible to differentiate effects of local polarity from N3 protonation on nitroxide EPR spectra. Titration of a synthetic P11 peptide fragment of the laminin B1 chain illustrates the utility of this method.  相似文献   

19.
The EPR properties of a novel triradical obtained by single‐electron oxidation of a nitroxide‐spin‐labelled rotaxane containing a tetrathiafulvalene unit and cyclobis(paraquat‐p‐phenylene) ring is reported. Rotaxanation is proved to have a dramatic effect on through‐space magnetic interactions between radical fragments. Analysis of the EPR spectra by a three‐jump model, allowed us to obtain structural information on the interlocked structure.  相似文献   

20.
The rotational mobilities of small solute molecules encapsulated in tetramethyl orthosilicate (TMOS) sol-gels have been investigated by EPR spectroscopy of encapsulated nitroxide probes and by high-resolution NMR spectroscopic measurements of transferred NOE's (trNOE's), of T(1)'s, and of T(1)'s in the rotating frame (T(1)rho). The two spectroscopic methods are sensitive to motions on different time scales and hence, are nicely complementary. Suites of neutral, positively, and negatively charged nitroxide probes (EPR) and of simple diamagnetic small molecules (NMR) were selected to disclose influences of electrostatic interactions with the sol-gel walls and to probe the presence of multiple populations of molecules in distinct regions of the sol-gel pores. For neutral and negatively charged solute probes, both techniques disclose a single population with a significantly increased average rotational correlation time, which we interpret at least in part as resulting from exchange between free-volume and transiently immobilized surface populations. The electrostatic attraction between cationic probes and the negatively charged sol-gel walls causes the positively charged probes to be more effectively immobilized and/or causes a greater percentage of probes to undergo this transient immobilization. The EPR spectra directly disclose a population of cationic probes which are immobilized on the X-band EPR time scale: tau(c) greater than or approximately equal 10(-7) s. However, NMR measurements of trNOE's and of T(1)rho demonstrate that this population does exchange with the free-volume probes on the slower time scale of NMR. This approach is equally applicable to the study of solutes within other types of confined spaces, as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号