首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The objective of the present work was to study the reforming of simulated natural gas via the nonthermal plasma process with the focus on the production of hydrogen and higher hydrocarbons. The reforming of simulated natural gas was conducted in an alternating current (AC) gliding arc reactor under ambient conditions. The feed composition of the simulated natural gas contained a CH4:C2H6:C3H8:CO2 molar ratio of 70:5:5:20. To investigate the effects of all gaseous hydrocarbons and CO2 present in the natural gas, the plasma reactor was operated with different feed compositions: pure CH4, CH4/He, CH4/C2H6/He, CH4/C2H6/C3H8/He and CH4/C2H6/C3H8/CO2. The results showed that the addition of gas components to the feed strongly influenced the reaction performance and the plasma stability. In comparisons among all the studied feed systems, both hydrogen and C2 hydrocarbon yields were found to depend on the feed gas composition in the following order: CH4/C2H6/C3H8/CO2 > CH4/C2H6/C3H8/He > CH4/C2H6/He > CH4/He > CH4. The maximum yields of hydrogen and C2 products of approximately 35% and 42%, respectively, were achieved in the CH4/C2H6/C3H8/CO2 feed system. In terms of energy consumption for producing hydrogen, the feed system of the CH4/C2H6/C3H8/CO2 mixture required the lowest input energy, in the range of 3.58 × 10−18–4.14 × 10−18 W s (22.35–25.82 eV) per molecule of produced hydrogen.  相似文献   

2.
The effect of stage number of multistage AC gliding arc discharge reactors on the process performance of the combined reforming and partial oxidation of simulated CO2-containing natural gas having a CH4:C2H6:C3H8:CO2 molar ratio of 70:5:5:20 was investigated. For the experiments with partial oxidation, either pure oxygen or air was used as the oxygen source with a fixed hydrocarbon-to-oxygen molar ratio of 2/1. Without partial oxidation at a constant feed flow rate, all conversions of hydrocarbons, except CO2, greatly increased with increasing number of stages from 1 to 3; but beyond 3 stages, the reactant conversions remained almost unchanged. However, for a constant residence time, only C3H8 conversion gradually increased, whereas the conversions of the other reactants remained almost unchanged. The addition of oxygen was found to significantly enhance the process performance of natural gas reforming. The utilization of air as an oxygen source showed a superior process performance to pure oxygen in terms of reactant conversion and desired product selectivity. The optimum energy consumption of 12.05 × 1024 eV per mole of reactants converted and 9.65 × 1024 eV per mole of hydrogen produced was obtained using air as an oxygen source and 3 stages of plasma reactors at a constant residence time of 4.38 s.  相似文献   

3.
In this study, a technique of combining steam reforming with partial oxidation of CO2-containing natural gas in a gliding arc discharge plasma was investigated. The effects of several operating parameters including: hydrocarbons (HCs)/O2 feed molar ratio; input voltage; input frequency; and electrode gap distance; on reactant conversions, product selectivities and yields, and power consumptions were examined. The results showed an increase in either methane (CH4) conversion or synthesis gas yield with increasing input voltage and electrode gap distance, whereas the opposite trends were observed with increasing HCs/O2 feed molar ratio and input frequency. The optimum conditions were found at a HCs/O2 feed molar ratio of 2/1, an input voltage of 14.5?kV, an input frequency of 300?Hz, and an electrode gap distance of 6?mm, providing high CH4 and O2 conversions with high synthesis gas selectivity and relatively low power consumptions, as compared with the other processes (sole natural gas reforming, natural gas reforming with steam, and combined natural gas reforming with partial oxidation).  相似文献   

4.
A novel 3D metal‐organic framework BSF‐1 based on the closo‐dodecaborate cluster [B12H12]2? was readily prepared at room temperature by supramolecular assembly of CuB12H12 and 1,2‐bis(4‐pyridyl)acetylene. The permanent microporous structure was studied by X‐ray crystallography, powder X‐ray diffraction, IR spectroscopy, thermogravimetric analysis, and gas sorption. The experimental and theoretical study of the gas sorption behavior of BSF‐1 for N2, C2H2, C2H4, CO2, C3H8, C2H6, and CH4 indicated excellent separation selectivities for C3H8/CH4, C2H6/CH4, and C2H2/CH4 as well as moderately high separation selectivities for C2H2/C2H4, C2H2/CO2, and CO2/CH4. Moreover, the practical separation performance of C3H8/CH4 and C2H6/CH4 was confirmed by dynamic breakthrough experiments. The good cyclability and high water/thermal stability render it suitable for real industrial applications.  相似文献   

5.
The aim of this research work was to evaluate the possibility of upgrading the simulated biogas (70?% CH4 and 30?% CO2) for hydrogen-rich syngas production using a multi-stage AC gliding arc system. The results showed that increasing stage number of plasma reactors, applied voltage and electrode gap distance enhanced both CH4 and CO2 conversions, in contrast with the increases in feed flow rate and input frequency. The gaseous products were mainly H2 and CO, with small amounts of C2H2, C2H4 and C2H6. The optimum conditions for hydrogen-rich syngas production using the four-stage AC gliding arc system were a feed flow rate of 150?cm3/min, an input frequency of 300?Hz, an applied voltage of 17?kV and an electrode gap distance of 6?mm. At the minimum power consumption (3.3?×?10?18?W?s/molecule of biogas converted and 2.8?×?10?18?W?s/molecule of syngas produced), CH4 and CO2 conversions were 21.5 and 5.7?%, respectively, H2 and CO selectivities were 57.1 and 14.9?%, respectively, and H2/CO (hydrogen-rich syngas) was 6.9. The combination of the plasma reforming and partial oxidation provided remarkable improvements to the overall process performance, especially in terms of reducing both the power consumption and the carbon formation on the electrode surface but the produced syngas had a much lower H2/CO ratio, depending on the oxygen/methane feed molar ratio. The best feed molar ratio of O2-to-CH4 ratio was found to be 0.3/1, providing the CH4 conversion of 81.4?%, CO2 conversion of 49.3?%, O2 conversion of 92.4?%, H2 selectivity of 49.5?%, CO selectivity of 49.96?%, and H2/CO of 1.6.  相似文献   

6.
Adsorption of each component of natural gas on adsorbent prepared from petroleum coke was studied. At 25 °C and 3.5 MPa, adsorption capacity of the components of natural gas are as follows: C3H8, H2S(0.980) > CO2(0.691) > C2H6(0.160) > CH4(0.136) > N2(0.096) (g/g). For natural gas, adsorption capacity is 145.2 (mL/mL) and delivery capacity is 105.7 (mL/mL). One equation between adsorption capacity and boiling point of adsorbed gas was firstly generalized. The adsorption capacity of different component like O2, N2, CH4, C2H6, CO2, H2S on adsorbents were predicted using the equation. The results fit well with the experimental data. The equation has significance in predicting the adsorption capacity for any component of natural gas. Charge-discharge tests were conducted 10 times, the result indicates that natural gas has significantly worse reversibility in adsorption and desorption in the adsorbent than that of CH4. The contents of the components after 10 charge-discharge show that the adsorption capacity drop of natural gas is due to the irreversible adsorption of heavy or polar components like C3H8, H2S.  相似文献   

7.
Adsorption of CO2, N2, CH4 and H2 on triamine-grafted pore-expanded MCM-41 mesoporous silica (TRI-PE-MCM-41) was investigated at room temperature in a wide range of pressure (up to 25 bar) using gravimetric measurements. The material was found to exhibit high affinity toward CO2 in comparison to the other species over the whole range of pressure. Column-breakthrough dynamic measurements of CO2-containing mixtures showed very high selectivity toward CO2 over N2, CH4 and H2 at CO2 concentrations within the range of 5 to 50%. These conditions are suitable for effective removal of CO2 at room temperature from syngas, flue gas and biogas using temperature swing (TS) or temperature-pressure swing (TPS) regeneration mode. Moreover, TRI-PE-MCM-41 was found to be highly stable over hundreds of adsorption-desorption cycles using TPS as regeneration mode.  相似文献   

8.
Storage and separation of small (C1–C3) hydrocarbons are of great significance as these are alternative energy resources and also can be used as raw materials for many industrially important materials. Selective capture of greenhouse gas, CO2 from CH4 is important to improve the quality of natural gas. Among the available porous materials, MOFs with permanent porosity are the most suitable to serve these purposes. Herein, a two‐fold entangled dynamic framework {[Zn2(bdc)2(bpNDI)]?4DMF}n with pore surface carved with polar functional groups and aromatic π clouds is exploited for selective capture of CO2, C2, and C3 hydrocarbons at ambient condition. The framework shows stepwise CO2 and C2H2 uptake at 195 K but type I profiles are observed at 298 K. The IAST selectivity of CO2 over CH4 is the highest (598 at 298 K) among the MOFs without open metal sites reported till date. It also shows high selectivity for C2H2, C2H4, C2H6, and C3H8 over CH4 at 298 K. DFT calculations reveal that aromatic π surface and the polar imide (RNC=O) functional groups are the primary adsorption sites for adsorption. Furthermore, breakthrough column experiments showed CO2/CH4 C2H6/CH4 and CO2/N2 separation capability at ambient condition.  相似文献   

9.
Permeability coefficients have been measured for CO2, CH4, C2H4, and C3H8 in polyethylene membranes at temperatures of 5, 20, and 35°C and at applied gas pressures of up to 30 atm. The temperature and pressure dependence of the permeability coefficients was represented satisfactorily by an extension of Fujita's free-volume model of diffusion of small molecules in polymers. The results of the present steady-state permeability measurements provide further support for the conclusion reached from previous unsteady-state diffusivity measurements that Fujita's model is applicable to the transport of small molecules, such as CO2, CH4, C2H4, and C3H8, in polyethylene. It was previously thought that this model is applicable only to the transport of larger molecules, such as of organic vapors, in polymers.  相似文献   

10.
We have studied the production of synthesis gas and other hydrocarbons in a dielectric barrier discharge using mixtures of helium, methane and carbon dioxide. It was found that helium has a significant influence on the discharge, decreasing the breakdown voltage and increasing the rate of conversion of CH4 and CO2. However it also decreases the selectivities and the range of stable operating conditions for the discharge. The main products obtained were H2, CO, C2H6 and C3H8 but traces of other hydrocarbon, carbon deposition and the formation of condensable products were also detected. The rate of conversion and conversion abilities were obtained by fitting the conversion results to a model.  相似文献   

11.
Polydimethylsiloxane (PDMS) is the most commonly used membrane material for the separation of condensable vapors from lighter gases. In this study, a composite PDMS membrane was prepared and its gas permeation properties were investigated at various upstream pressures. A microporous cellulose acetate (CA) support was initially prepared and characterized. Then, PDMS solution, containing crosslinker and catalyst, was cast over the support. Sorption and permeation of C3H8, CO2, CH4, and H2 in the prepared composite membrane were measured. Using sorption and permeation data of gases, diffusion coefficients were calculated based on solution‐diffusion mechanism. Similar to other rubbery membranes, the prepared PDMS membrane advantageously exhibited less resistance to permeation of heavier gases, such as C3H8, compared to the lighter ones, such as CO2, CH4, and H2. This result was attributed to the very high solubility of larger gas molecules in the hydrocarbon‐based PDMS membrane in spite of their lower diffusion coefficients relative to smaller molecules. Increasing feed pressure increased permeability, solubility, and diffusion coefficients of the heavier gases while decreased those of the lighter ones. At constant temperature (25°C), empirical linear relations were proposed for permeability, solubility, and diffusion coefficients as a function of transmembrane pressure. C3H8/gas solubility, diffusivity, and overall selectivities were found to increase with increasing feed pressure. Ideal selectivity values of 9, 30, and 82 for C3H8 over CO2, CH4, and H2, respectively, at an upstream pressure of 8 atm, confirmed the outstanding separation performance of the prepared membrane. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
Methane conversions of 11.9%, yields of hydrogen as high as 23.3% and energy yields of 1.0 mol H2/kWh have been achieved from CO2 reforming of CH4 in non-thermal, atmospheric pressure plasma reactors with Pt coated electrodes. Two reactors have been studied. A novel fan type reactor consisting of a movable rotor and immobile stator produced the highest yields in contrast to a tube type (silent discharge) reactor with a glass dielectric barrier. Conversions, yields of hydrogen and energy yields (expressed as mol H2/kWh) were studied for CO2/CH4 concentrations of 1.1% and 5.0% in He as a function of flow rate and input voltage. Hydrogen yields are observed to increase as the input voltage is increased from 411 V to 911 V and the flow rate is decreased from 100 cc/min to 30 cc/min. Energy yields vary only slightly with input voltage and flow rate. Hydrogen yields show little dependence on CO2/CH4 concentrations, but energy yields are approximately five times greater for the 5.0% mixture than the 1.1% mixture. Selectivities to H2, CO, coke, and low molecular weight hydrocarbons were also evaluated and compared to data obtained without CO2 in the feed. Hydrogen selectivities of nearly 100% were obtained, with small amounts of ethane and propane as the only observed side products and the selectivites were approximately the same whether CO2 was present or absent in the mixture. However, the reaction proceeds much more cleanly when CO2 is present, producing CO. The syngas product has an H2 : CO ratio of 1.5 with the fan type reactor and 0.67 with the tubular reactor. In the absence of CO2, coke is the main carbonaceous product. Under all conditions studied the fan type reactor demonstrated higher methane conversions (up to 11.9%) and selectivities to hydrogen.  相似文献   

13.
赵健  周伟  马建新 《物理化学学报》2001,30(7):1325-1331
与传统H2预处理方法相比,新型H2+CO2预处理方法(HCD)能显著提升Ni-Co双金属催化剂的沼气重整活性及抗积碳性能. 考察了HCD预处理操作条件对催化剂性能与结构的影响. 较好的HCD预处理操作条件是在催化剂经H2处理之后,再用175-200 mL·min-1的原料气CH4/CO2(比例为0:10)在780-800 ℃下还原0.5-1h. 在优化预处理操作条件下对催化剂进行了511 h的耐久性考察,并运用X射线衍射(XRD)、热重-差示扫描量热(TG-DSC)、透射电子显微镜(TEM)等手段对耐久性测试后的催化剂进行了表征. 在511 h 的稳定性实验内,CH4、CO2转化率,H2、CO选择性及H2/CO体积比分别高达96%、97%,98%、99%及0.98. 催化剂在测试期间的平均积碳速率仅为0.2 mg·g-1·h-1. 在该预处理操作参数下,催化剂拥有最好的综合性能和良好的耐久性.  相似文献   

14.
An AC-pulsed tornado gliding arc plasma was employed for CO2 conversion via CO2 decomposition and dry reforming reactions. A stable and high-efficient constant arc length discharge mode was obtained in this plasma reactor. And then, CO2 conversion was studied under this discharge mode. In the case of CH4/CO2 = 0, CO2 was converted to CO and O2 via the CO2 decomposition reaction. Energy efficiency of 29 % was attained at CO2 conversion of 6 %. With strong reducing agent CH4 added into CO2, the main contributor of CO2 conversion changed from CO2 decomposition to dry reforming of CH4. Conversions of CH4 and CO2, energy efficiency and energy cost changed sharply at CO2/CH4 ratios lower than 1/4, while they changed slowly at CH4/CO2 ratios above 1/4. In the case of CH4/CO2 = 2/3, energy efficiency of 68 % and syngas energy cost of 1.6 eV/mole were achieved at CH4 conversion of 29 % and CO2 conversion of 22 %.  相似文献   

15.
A highly water and thermally stable metal-organic framework (MOF) Zn2(Pydc)(Ata)2 (1, H2Pydc = 3,5-pyridinedicarboxylic acid; HAta = 3-amino-1,2,4-triazole) was synthesized on a large scale using inexpensive commercially available ligands for efficient separation of C2H2 from CH4 and CO2. Compound 1 could take up 47.2 mL/g of C2H2 under ambient conditions but only 33.0 mL/g of CO2 and 19.1 mL/g of CH4. The calculated ideal absorbed solution theory (IAST) selectivities for equimolar C2H2/CO2 and C2H2/CH4 were 5.1 and 21.5, respectively, comparable to those many popular MOFs. The Qst values for C2H2, CO2, and CH4 at a near-zero loading in 1 were 43.1, 32.1, and 22.5 kJ mol−1, respectively. The practical separation performance for C2H2/CO2 mixtures was further confirmed by column breakthrough experiments.  相似文献   

16.
At temperatures up to 1100°C, CH4 and CO2 react over a Pt wire to give mainly the reforming product CO, even at a CH4/CO2 ratio of 4.3. But if coke is present on the wire, the dominant reaction becomes the pyrolysis of CH4 to form mainly C2H2 and C6H6. Thus, surface carbon poisons the reforming reaction and is autocatalytic for CH4 pyrolysis. Higher temperatures and larger CH4/O2 ratios favor the formation of coke and the pyrolysis reaction. Molecular oxygen and, to a lesser extent, water have the opposite effect.  相似文献   

17.
Sustainable, low‐temperature methods for natural gas activation are critical in addressing current and foreseeable energy and hydrocarbon feedstock needs. Large portions of natural gas resources are still too expensive to process due to their high content of hydrogen sulfide gas (H2S) mixed with methane, deemed altogether as sub‐quality or “sour” gas. We propose a unique method of activation to form a mixture of sulfur‐containing hydrocarbon intermediates, CH3SH and CH3SCH3, and an energy carrier such as H2. For this purpose, we investigated the H2S‐mediated methane activation to form a reactive CH3SH species by means of direct photolysis of sub‐quality natural gas. Photoexcitation of hydrogen sulfide in the CH4+H2S complex resulted in a barrierless relaxation by a conical intersection to form a ground‐state CH3SH+H2 complex. The resulting CH3SH could further be coupled over acidic catalysts to form higher hydrocarbons, and the resulting H2 used as a fuel. This process is very different from conventional thermal or radical‐based processes and can be driven photolytically at low temperatures, with enhanced control over the conditions currently used in industrial oxidative natural gas activation. Finally, the proposed process is CO2 neutral, as opposed to the current industrial steam methane reforming (SMR).  相似文献   

18.
Ion-exchange with different cations (Na+, NH4 +, Li+, Ba2+ and Fe3+) was performed in binderless 13X zeolite pellets. Original and cation-exchanged samples were characterized by thermogravimetric analysis coupled with mass spectrometry (inert atmosphere), X-ray powder diffraction and N2 adsorption/desorption isotherms at 77 K. Despite the presence of other cations than Na (as revealed in TG-MS), crystalline structure and textural properties were not significantly altered upon ion-exchange. Single component equilibrium adsorption isotherms of carbon dioxide (CO2) and methane (CH4) were measured for all samples up to 10 bar at 298 and 348 K using a magnetic suspension balance. All of these isotherms are type Ia and maximum adsorption capacities decrease in the order Li > Na > NH4–Ba > Fe for CO2 and NH4–Na > Li > Ba for CH4. In addition to that, equilibrium adsorption data were measured for CO2/CH4 mixtures for representative compositions of biogas (50 % each gas, in vol.) and natural gas (30 %/70 %, in vol.) in order to assess CO2 selectivity in such scenarios. The application of the Extended Sips Model for samples BaX and NaX led to an overall better agreement with experimental data of binary gas adsorption as compared to the Extended Langmuir Model. Fresh sample LiX show promise to be a better adsorption than NaX for pressure swing separation (CO2/CH4), due to its higher working capacity, selectivity and lower adsorption enthalpy. Nevertheless, cation stability for both this samples and NH4X should be further investigated.  相似文献   

19.
Polyimide membranes derived from 6FDA-DAM:DABA and 6FDA-6FpDA:DABA copolymers have been used to separate 50/50 CO2/CH4 mixtures and multicomponent synthetic natural gas mixtures at 35 °C and feed pressures up to 55 atm. For 6FDA-DAM:DABA 2:1 membranes the effects of thermal annealing and covalent crosslinking are decoupled with respect to effects on permeabilities and selectivity. Crosslinking at 295 °C with 1,4-butylene glycol and 1,4-cyclohexanedimethanol increases CO2 permeabilities by factors of 4.1 and 2.4, respectively, at 20 atm feed pressure, without a loss in selectivity, relative to crosslinking at 220 °C. Thermal annealing and crosslinking also reduce CO2 plasticization effects. Crosslinking of DABA-containing copolymers, therefore, can produce membranes with tunable transport properties that offer significantly higher performance with better plasticization-resistance than that reported in the literature for the commercial polymers Matrimid® and cellulose acetate for CO2 removal from natural gas mixtures. Separation of complex mixtures containing CO2, CH4, C2H6, C3H8, and C4H10 or toluene results in a significant decrease of the CO2 permeability, but only a moderate decrease in the CO2/CH4 selectivity.  相似文献   

20.
Amorphous metal–organic frameworks (amMOFs) with a partially collapsed structure are a new category of porous hybrid materials. Here, solid-state amorphization of ZIF-8 was achieved by mechanical compression at 0.75 GPa. The compression-induced amorphous ZIF-8 (amZIF-8) had a collapsed structure, but retained partial porosity. Benefiting from the deformed channel, the resultant amZIF-8 exhibited preferable adsorption of C3H6, resulting in higher thermodynamic adsorption selectivity of C3H6/C3H8 (6.72) than the crystalline counterparts (1.06). Further, amZIF-8 achieved complete separation of an equimolar C3H6/C3H8 mixture with the first breakthrough of C3H8. amZIF-8 also displayed an enhancement in CO2/N2 and CO2/CH4 adsorption selectivities. More importantly, a self-standing amZIF-8 membrane with boundary-free microstructure was constructed for the first time, and exhibited separation potential for H2/CH4, CO2/N2, CO2/CH4, and C3H6/C3H8 with ideal selectivities of 14.79, 12.83, 16.23, and 2.67, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号