首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We report studies of supersonically cooled m-aminobenzoic acid using two-color resonantly enhanced multiphoton ionization (REMPI) and two-color zero kinetic energy (ZEKE) photoelectron spectroscopy. Two conformers have been identified and characterized using the hole-burning method in the REMPI experiment. With the aid of ab initio and density functional calculations, vibrational modes of the first electronically excited state (S(1)) of the neutral species and those of the ground state cation (D(0)) have been assigned, and the adiabatic ionization potentials have been determined for both conformers. The REMPI spectra are dominated by in-plane motions of the substituents and ring deformation modes. A propensity of Deltav=0, where Deltav is the change in vibrational quantum number from the S(1) to the D(0) state, is observed in the ZEKE spectra. The origin of this behavior is discussed in the context of electron back donation from the two substituents in the excited state and in the cationic state. Comparisons of these results with those of p-aminobenzoic acid will be analyzed.  相似文献   

2.
We report studies of a supersonically cooled 2-indanol using two-color resonantly enhanced multiphoton ionization (REMPI) and two-color zero kinetic energy (ZEKE) photoelectron spectroscopy. In the REMPI experiment, we have identified three conformers of 2-indanol and assigned the vibrational structures of the first electronically excited state for the two major conformers. Conformer Ia contains an intramolecular hydrogen bond between the -OH group and the phenyl ring, while conformer IIb has the -OH group in the equatorial position. We have further investigated the vibrational spectroscopy of the cation for the two major conformers using the ZEKE spectroscopy. The two conformers display dramatically different vibrational distributions. The ZEKE spectrum of conformer Ia shows an extensive progression in the puckering mode of the five member ring, indicating a significant geometry change upon ionization. The ZEKE spectra of conformer IIb are dominated by single vibronic transitions, and the intensity of the ZEKE signal is much stronger than that of conformer Ia. These results indicate an invariance of the molecular frame during ionization for conformer IIb. We have performed ab initio and density functional theory calculations to obtain potential energy surfaces along the dihedral angle involving the -OH group for all three electronic states. In addition, we have also calculated the vibrational distribution of the ZEKE spectrum for the puckering mode of the five member ring. Not only the vibrational frequencies but also the intensity distributions for both conformers have been reproduced satisfactorily. The adiabatic ionization energies have been determined to be 68 593+/-5 cm(-1) for conformer Ia and 68 981+/-5 cm(-1) for conformer IIb.  相似文献   

3.
We report the electronic and vibrational spectroscopy of chrysene using resonantly enhanced multiphoton ionization (REMPI) and zero kinetic energy (ZEKE) photoelectron spectroscopy. As an isomer of tetracene, chrysene contains a kink in the middle of the four fused hexagonal rings, which complicates not just the symmetry but, more importantly, the molecular orbitals and hence vibronic transitions. Incidentally, the two nearby electronically excited states of chrysene have the same symmetry, and vibronic coupling introduces no out-of-plane vibrational modes. As a result, the REMPI spectrum of chrysene contains essentially only in-plane ring deformation modes, similar to that of tetracene. However, density functional calculations using gaussian even after the inclusion of vibronic coupling can only duplicate the observed REMPI spectrum in a qualitative sense, and the agreement is considerably worse than our recent work on a few pericondensed polycyclic aromatic hydrocarbons and on tetracene. The ZEKE spectrum of chrysene via the origin band of the intermediate electronic state S(1), however, can be qualitatively reproduced by a straightforward Franck-Condon calculation. The ZEKE spectra from vibrationally excited states of the S(1), on the other hand, demonstrate some degree of mode selectivity: the overall intensity of the ZEKE spectrum can vary by an order of magnitude depending on the vibrational mode of the intermediate state. A scaling factor in the theoretical vibrational frequency for the cation is also needed to compare with the experimental result, unlike tetracene and pentacene.  相似文献   

4.
We report zero kinetic energy (ZEKE) photoelectron spectroscopy of benzo[a]pyrene (BaP) via resonantly enhanced multiphoton ionization (REMPI). Our analysis concentrates on the vibrational modes of the first excited state (S(1)) and those of the ground cationic state (D(0)). Similar to pyrene, another peri-condensed polycyclic aromatic hydrocarbon we have investigated, the first two electronically excited states of BaP exhibit extensive configuration interactions. However, the two electronic states are of the same symmetry, hence vibronic coupling does not introduce any out-of-plane modes in the REMPI spectrum, and Franck-Condon analysis is qualitatively satisfactory. The ZEKE spectra from the in-plane modes observed in the REMPI spectrum demonstrate strong propensity in preserving the vibrational excitation of the intermediate state. Although several additional bands in combination with the vibrational mode of the intermediate state are identifiable, they are much lower in intensity. This observation implies that the molecular structure of BaP has a tremendous capability to accommodate changes in charge density. All observed bands of the cation are IR active, establishing the role of ZEKE spectroscopy in mapping out far infrared bands for astrophysical applications.  相似文献   

5.
We report studies of supersonically cooled p-amino benzoic acid using one-color resonantly enhanced multiphoton ionization and two-color zero kinetic energy (ZEKE) photoelectron spectroscopy. With the aid of ab initio and density functional calculations, vibrational modes of the first electronically excited state S(1) of the neutral species and those of the cation have been assigned, and the adiabatic ionization potential has been determined to be 64 540+/-5 cm(-1). A common pattern involving the activation of five vibrational modes of the cation is recognizable among all the ZEKE spectra. A propensity of Deltav=0, where v is the vibrational quantum number of the intermediate vibronic state from S(1), is confirmed, and the origin of this behavior is discussed in the context of electron back donation from the two substituents in the excited state and in the cationic state. A puzzling observation is the doublet splitting of 37 cm(-1) in the ZEKE spectrum obtained via the inversion mode of the S(1) state. This splitting cannot be explained from our density functional calculations.  相似文献   

6.
Zero electron kinetic energy (ZEKE) spectroscopy is employed to gain information on the vibrational energy levels of the para-fluorotoluene (pFT) cation. Vibrationally resolved spectra are obtained following excitation through a range of intermediate vibrational energy levels in the S1 state. These spectra allow the observation of different cationic vibrational modes, whose assignment is achieved both from a knowledge of the S1 vibrational states and also by comparison with density functional calculations. In one notable case, clean ZEKE spectra were obtained from two overlapped S1 features. From the authors' data, the adiabatic ionization energy of pFT was derived as 70,946+/-4 cm(-1). The information on the cationic energy levels obtained will be useful in untangling the intramolecular vibrational redistribution dynamics of pFT in the S1 state.  相似文献   

7.
The 1,4-diazabicyclo[2.2.2]octane-Arn (n = 1,2,3) van der Waals complexes (DABCO-Arn) have been investigated using a combination of (1 + 1') resonance enhanced multiphoton ionization (REMPI) and zero electron kinetic energy (ZEKE) spectroscopy. The additivity of the spectral shifts observed in both REMPI and ZEKE spectra, taken together with analysis of vibrational structure, suggest that in both DABCO-Ar and DABCO-Ar2 the argon atoms bind in equivalent equatorial (face) locations between two adjacent (CH2)2 bridges. However, the cumulative evidence from both REMPI and ZEKE spectra, together with ab initio results, suggests that the DABCO-Ar3 complex does not revert to D3h symmetry, but rather adopts a C2v structure in which all three argon atoms bind to one side of the DABCO framework. The exceptionally low wave-number vibrational structure observed in the REMPI spectra suggest that the van der Waals interaction in the excited state is extremely weak. However, ionization necessarily increases the strength of the interaction by virtue of the introduction of charge-induced dipole forces, as revealed by a consistent increase in vibrational wave numbers of the modes observed in the resultant ZEKE spectra.  相似文献   

8.
Zero kinetic energy (ZEKE) photoelectron spectroscopy of the hydroquinone-water (HQW) complex was carried out to characterize its S(1)-S(0) resonantly enhanced multiphoton ionization (REMPI) spectrum in terms of the cis and trans conformers. The ZEKE spectra of the hydroquinone isomers show differences in the Franck-Condon (FC) activity of a few ring modes, viz., modes 15, 9b, and 6b, due to the different symmetries of the two isomers. These modes were used as a "diagnostic tool" to carry out the categorical assignment of the REMPI spectrum of the HQW complex. It was found that the FC activity of these diagnostic modes in the cationic ground state (D(0)) of the water complex is similar as that of the monomer. The two lowest energy transitions in the REMPI spectrum of the water complex, 33,175 and 33,209 cm(-1), were reassigned as the band origins of the cis and trans hydroquinone-water complexes, which is opposite of the previous assignment. The intermolecular stretching mode (sigma) of the complex shows a long progression, up to v(')=4, in the cationic ground state and is strongly coupled to other observed ring modes. The Franck-Condon factors for different members in the progression were calculated using the potential energy surfaces computed ab initio. These agree well with the observed intensity patterns in the progression. The ionization potential of the trans and cis complexes was determined to be 60,071+/-4 and 60,024+/-4 cm(-1), respectively.  相似文献   

9.
We report zero kinetic energy (ZEKE) photoelectron spectroscopy of benzo[g,h,i]perylene (BghiP) via resonantly enhanced multiphoton ionization (REMPI). Our analysis concentrates on the vibrational modes of both the first electronically excited state and the ground cationic state. Extensive vibronic coupling due to a nearby electronically excited state manifests through strong Franck-Condon (FC) forbidden bands, which are stronger than even the FC allowed bands in the REMPI spectrum. Theoretical calculations using Gaussian are problematic in identifying the electronic configurations of the excited electronic states and predicting the transition energies. However, by setting the keyword for the second excited electronic state, both density functional theory and configuration interaction methods can reproduce the observed spectrum qualitatively. The general agreement significantly helps with the vibrational assignment. The ZEKE spectra demonstrate propensity in preserving the vibrational excitation of the intermediate electronic state. In addition, almost all ZEKE spectra exhibit a similar vibrational distribution, and the distribution can be reproduced by an FC calculation from the vibronic origin of the first excited electronic state to the cationic state using Gaussian 09. These results suggest a remarkable structural stability of BghiP in accommodating the additional charge. All observed vibrational bands of the cation are IR active, establishing the role of ZEKE spectroscopy in mapping out far-infrared bands for astrophysical applications.  相似文献   

10.
Two conformational isomers of the aromatic hydrocarbon n-butylbenzene have been studied using two-color MATI (mass analyzed threshold ionization) spectroscopy to explore the effect of conformation on ionization dynamics. Cationic states of g auche-conformer III and anti- conformers IV were selectively produced by two-color excitation via the respective S 1 origins. Adiabatic ionization potentials of the gauche- and anti-conformations were determined to be 70146 and 69872 +/- 5 cm (-1) respectively. Spectral features and vibrational modes are interpreted with the aid of MP2/cc-pVDZ ab initio calculations, and ionization-induced changes in the molecular conformations are discussed. Complete basis set (CBS) ab initio studies at MP2 level reveal reliable energetics for all four n-butylbenzene conformers observed in earlier two-color REMPI (resonance enhanced multiphoton ionization) spectra. For the S 0 state, the energies of conformer III, IV and V are above conformer I by 130, 289, 73 cm (-1), respectively. Furthermore, the combination of the CBS calculations with the measured REMPI, MATI spectra allowed the determination of the energetics of all four conformers in the S 1 and D 0 states.  相似文献   

11.
The vibrational structure of vinyl chloride cation, CH(2)CHCl+ (X(2)A' '), has been studied by vacuum ultraviolet (VUV) zero-kinetic energy (ZEKE) photoelectron spectroscopy. Among nine symmetric vibrational modes, the fundamental frequencies of six modes have been determined. The first overtone of the out-of-plane CH(2) twist vibrational mode has been also measured. In addition to these, the combination and overtone bands of the above vibrational modes about 4500 cm(-1) above the ground state have been observed in the ZEKE spectrum. The vibrational band intensities of the ZEKE spectrum can be described approximately by the Franck-Condon factors with harmonic approximation. The ZEKE spectrum has been assigned based on the harmonic frequencies and Franck-Condon factors from theoretical calculations. The ionization energy (IE) of CH(2)CHCl is determined as 80705.5 +/- 2.5 (cm(-1)) or 10.0062 +/- 0.0003 (eV).  相似文献   

12.
Adiabatic ionization energy (AIE) and two-color threshold ion vibrational spectra of p-fluorostyrene have been measured by mass analyzed threshold ionization (MATI) method via three different intermediate levels in the first excited state, vibrationless S1 origin, 42(1)41(1), and 23(1) vibronic levels. Features of the ion vibrational spectra indicates that the geometry of the molecular ion including the conformation of the vinyl chain in the ionic ground state (D0) is almost identical to that of its neutral ground state (S0), and ionization has very little effect on the vibrational potentials of the aromatic ring modes. Comparison of the AIE with the reported value of styrene shows that fluorination at the para position of the aromatic ring has little effect on energy of the electron ejected in ionization process from the styrene chromophore.  相似文献   

13.
The adiabatic ionization threshold (AIT) of trans- and gauche-benzocaine has been measured by zero electron kinetic energy-pulsed field ionization (ZEKE-PFI) spectroscopy to be 7.8412+/-0.0008 eV (lasers at 34,134.4 and 29,109.3 cm(-1)) and 7.8421+/-0.0004 eV (34,144.8+29105.7 cm(-1)), respectively. AITs computed at the B3LYP/AUG-cc-p-VDZ level for the two conformers are some approximately 2,500 cm(-1) lower than the experimental; in contrast their energy difference is very close. The trans-benzocaine cation ZEKE spectra has been recorded taking a number of S(1) intermediate vibronic states. The spectra provide an energy threshold for the appearance of intramolecular vibrational redistribution (IVR) around approximately 540 cm(-1) in the S(1) state.  相似文献   

14.
Clusters of Ar bound to isomers of the aromatic hydrocarbon n-butylbenzene (BB) have been studied using two-color REMPI (resonance enhanced multiphoton ionization) and MATI (mass analyzed threshold ionization) spectroscopy to explore noncovalent vdW interactions between these two moieties. Blue shifts of excitation energy were observed for gauche-BB...Ar clusters, and red shifts for anti-BB...Ar clusters were observed. Adiabatic ionization energies (IEs) of the conformer BB-I...Ar and BB-V...Ar were determined as 70052 and 69845 +/- 5 cm (-1), respectively. Spectral features and vibrational modes were interpreted with the aid of UMP2/cc-pVDZ ab initio calculations. Data of complexation shifts of the alkyl-benzenes and their argon clusters were collected and discussed. Using the CCSD(T) method at complete basis set (CBS) level, interaction energies for the neutral ground states of BB-I...Ar and BB-V...Ar were obtained as 650 and 558 cm (-1), respectively. Combining the CBS calculation results and the REMPI and MATI spectra allowed further the determination of the interaction energies and the energetics of BB...Ar in the excited neutral S 1 and the D 0 cationic ground states.  相似文献   

15.
Two-color resonance-enhanced multiphoton ionization (REMPI) spectra of jet-cooled (eta(6)-C(6)H(6))(2)Cr(1), (eta(6)-C(6)D(6))(2)Cr(2), and (eta(6)-C(6)D(6))(eta(6)-C(6)D(5)H)Cr(3) have been measured with use of the 3d(z)2-->R4p(x,y) Rydberg transition as the first step of the electronic excitation. The 0(0) (0) Rydberg component shifts by 59 and 54 cm(-1) to red when one goes from 1 to 2 and 3, respectively. Surprisingly, the REMPI spectra of 1-3 show very rich vibronic structures revealing both totally symmetric vibrations and degenerate vibrational modes. Presence of intense peaks corresponding to the e(2g) modes in the spectra of 1 and 2 is indicative of Jahn-Teller coupling in the R4p(x,y) Rydberg state. Additional REMPI resonances appear on going from 1 and 2 to 3 as a result of the symmetry reduction. The vibronic components in the spectra of 1-3 were assigned on the basis of the selection rules and comparison with the vibrational frequencies of the 1 and 2 ground-state molecules. The frequencies of over 10 normal vibrations have been determined for the gas-phase 1-3 Rydberg-state molecules from the REMPI experiment. The wavenumber corresponding to the lowest-energy mode (the ring torsion vibration) appears to be 40 cm(-1) in 1 and 35 cm(-1) in the deuterated complexes. The REMPI peaks are homogeneously broadened. The lower lifetime limits for the upper-state components increase on going from the vibrationless level to higher-lying vibronic states and on going from 1 to the deuterated derivatives.  相似文献   

16.
The fluorobenzene-ammonia van der Waals complex has been studied using a combination of two-color resonance enhanced multiphoton ionization (REMPI) spectroscopy, counterpoise corrected RICC2 ab initio molecular orbital calculations, and multidimensional Franck-Condon analysis. The experimental REMPI spectrum is characterized by a dominant, blueshifted band origin, and weak activity in intermolecular vibrational modes. RICC2 geometry optimizations and numerical vibrational frequency calculations of the neutral ground and first excited states have been performed on a number of different structural isomers of the complex using basis sets ranging from augmented double-zeta to quadruple-zeta level. Ground state basis set superposition error corrected zero-point binding energies show the in-plane sigma complex, forming a pseudo-six-membered ring connecting the fluorine atom and ortho-hydrogen, to be consistently the most stable of all six conformations considered, at all levels of theory. Comparison of computed zero-point excitation energies for the most stable pi and sigma conformers with fluorobenzene show that the sigma complex is the only conformer predicted to exhibit a spectral blueshift upon electronic excitation. The computed neutral ground and first excited state geometries and frequencies were used to perform multidimensional Franck-Condon simulations of the S(1)-S(0) vibronic spectrum for each of the most stable conformers. These simulations yielded null spectra for transitions involving the most stable of the pi complexes, pi(bridge); a spectrum rich in strong intermolecular vibrational structure for the second of the pi complexes, in complete contrast to the experimental spectrum; and for the sigma complex, a spectrum exhibiting weak intermolecular activity in line with that observed experimentally. This last simulation allowed an almost complete vibrational assignment of the intermolecular structure in the REMPI spectrum. The agreement between computational results and experiment overwhelmingly favors assignment of the spectrum to the in-plane sigma complex.  相似文献   

17.
We report studies of supersonically cooled indan using two-color resonantly enhanced multiphoton ionization and two-color zero-kinetic-energy photoelectron spectroscopy. With the aid of ab initio and density-functional calculations, vibrational modes of the first electronically excited state of the neutral species and those of the cation have been assigned, and the adiabatic ionization energy has been determined to be 68458 +/- 5 cm(-1). Similar to the ground state and the first electronically excited state of the neutral molecule, the ground state of the cation is also proven to be nonplanar, with an estimated barrier of 213 cm(-1) and a puckering angle of 15.0 degrees. These conclusions will be discussed in comparison with a previous study of an indan derivative 1,3-benzodioxole.  相似文献   

18.
We have studied 3s(n-1 and pi-1) Rydberg states and D0(n-1) and D1(pi-1) cationic states of pyrazine [1,4-diazabenzene] by picosecond (2 + 1) resonance-enhanced multiphoton ionization (REMPI), (2 + 1) REMPI photoelectron imaging, He(I) ultraviolet photoelectron spectroscopy (UPS), and vacuum ultraviolet pulsed field ionization photoelectron spectroscopy (VUV-PFI-PE). The new He(I) photoelectron spectrum of pyrazine in a supersonic jet revealed a considerably finer vibrational structure than a previous photoelectron spectrum of pyrazine vapor. We performed Franck-Condon analysis on the observed photoelectron and REMPI spectra in combination with ab initio density functional theory and molecular orbital calculations to determine the equilibrium geometries in the D0 and 3s(n-1) states. The equilibrium geometries were found to differ slightly between the D0 and 3s states, indicating the influence of a Rydberg electron on the molecular structure. The locations of the D1-D0 and 3s(pi-1)-3s(n-1) conical intersections were estimated. From the line width in the D1 <-- S0 spectrum, we estimated the lifetime of D1 to be 12 fs for pyrazine and 15 fs for fully deuterated pyrazine. A similar lifetime was estimated for the 3s(pi-1) state of pyrazine by REMPI spectroscopy. The vibrational feature of D1 observed in the VUV-PFI-PE measurement differed dramatically from that in the UPS spectrum, which suggests that the high-n Rydberg (ZEKE) states converging to the D1 vibronic state are short-lived due to electronic autoionization to the D0 continuum.  相似文献   

19.
Copper complexes of ethylenediamine (en), N-methylethylenediamine (meen), N,N-dimethylethylenediamine (dmen), N,N,N'-trimethylethylenediamine (tren), and N,N,N',N'-tetramethylethylenediamine (tmen) are synthesized in laser-vaporization supersonic molecular beams and studied by pulsed-field ionization zero electron kinetic energy (ZEKE) and photoionization efficiency spectroscopies and second-order Moller-Plesset perturbation theory. Precise ionization energies and vibrational frequencies of Cu-en, -meen, and -dmen are measured from the ZEKE spectra, and ionization thresholds of Cu-tren and -tmen are estimated from the photoionization efficiency spectra. The measured vibrational modes span a frequency range of 35-1646 cm(-1) and include metal-ligand stretch and bend, hydrogen-bond stretch, and ligand-based torsion. A number of low-energy structures with Cu binding to one or two nitrogen atoms are predicted for each complex by the ab initio calculations. The combination of the spectroscopic measurements and ab initio calculations has identified a hydrogen-bond-stabilized monodentate structure for the Cu-en complex and bidentate cyclic structures for the methyl-substituted derivatives. The change of the Cu binding from the monodentate to the bidentate mode arises from the competition between copper coordination and hydrogen bonding.  相似文献   

20.
Far infrared (FIR) spectroscopy of polycyclic aromatic hydrocarbons is of particular interest to astrophysics since vibrational modes in this range are representative of the molecular size and shape. This information is hence important for identification of chemical compositions and for modeling of the IR spectrum observed in the outer space. In this work, we report neutral and cation FIR spectroscopy of tetracene vaporized from a laser desorption source. Results from two-color resonantly enhanced multiphoton ionization and two-color zero kinetic energy photoelectron spectroscopy will be presented. Several skeletal vibrational modes of the first electronically excited state of the neutral species and those of the cation are assigned, with the aid of ab initio and density functional calculations. The adiabatic ionization potential is determined to be 55 918 +/- 7 cm(-1). Interestingly, all observed vibrational modes can be rationalized based on a simple Huckle calculation, i.e., by observing the addition or elimination of nodal planes due to electronic excitation and/or ionization. Limited by the Franck-Condon principle and the rigidity of the molecular frame of tetracene, only IR forbidden modes are observed in this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号