首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intramolecular charge transfer (ICT) behavior of trans-ethyl p-(dimethylamino)cinamate (EDAC) in various solvents has been studied by steady-state absorption and emission, picosecond time-resolved fluorescence spectroscopy and femtosecond transient absorption experiments as well as time-dependent density functional theory (TDDFT). Large fluorescence spectral shift in more polar solvents indicates an efficient charge transfer from the donor site to the acceptor moiety in the excited state compared to the ground state. The energy for 0,0 transition (ν0,0) for EDAC shows very good linear correlation with static solvent dielectric property. The relaxation dynamics of EDAC in the excited state can be effectively described by a “three state” model where, the locally excited (LE) state converts into the ICT state within 350 ± 100 fs. A combination of solvent reorganization and intramolecular vibrational relaxation within 0.5–6 ps populates the relaxed ICT state which undergoes fluorescence decay within few tens to hundreds of picoseconds.  相似文献   

2.
Steady-state and time-resolved emission spectroscopy (TRES) of the medium-sensitive probes 4-aminophthalimide (4-AP) and 6-propionyl-2-(dimethylamino)naphthalene (Prodan) were performed at 77 and 298 K in vacuum-sealed thin films of poly(vinyl alcohol) (PVA) and poly(vinyl acetate) (PVAc). The two probes show similar red-edge effect in steady state emission and a red shift with time in TRES in PVA. In PVAc the red shifts are much smaller and the spectral shift for 4-AP is slower. 4-AP locates in highly polar environments in PVA, where H-bond interaction with the polymer is important. Prodan locates in less polar environments, as evidenced by the position of the emission maximum with respect to reference solvents. Consequently, the observed monoexponential spectral red shift with time of 4-AP in PVA and in PVAc is attributed to relaxation of the interaction of the probe with the hydroxy and acetate moieties, respectively. The more intense interaction of the lighter -OH moiety with the probes explains the greater and faster spectral shift observed in PVA compared to PVAc. The lifetime of this monoexponential spectral shift is independent of temperature in PVA and takes place with a highly negative activation entropy. This fact is attributed to a collective rearrangement of -OH groups to better interact with the excited state. This relaxation nevertheless does not account for the complete accommodation of the excited state. Prodan shows a linear variation of the spectral shift with time that can be explained by microheterogeneity. In PVA, the width at half-maximum of the emission spectra does not change with time for Prodan and it decays with a lifetime similar to the lifetime of the spectral shift in the case of 4-AP. The differences in the behavior of the probes are attributed to their different average location in the polymer matrix.  相似文献   

3.
Excited-state intramolecular proton transfer (ESIPT) occurring in the salicylic acid (SA) derivative 5-methoxysalicylic acid (5-MeOSA) in an apolar solvent (cyclohexane) and in the presence of the hydrogen bond accepting agent diethyl ether (DEE) is investigated. Analysis of the directly measured subnanosecond time-resolved emission spectra (TRES) together with conventional steady-state fluorescence and time-correlated single-photon-counting (TCSPC) decays indicates that ESIPT in this system occurs much faster than fluorescence, and that the equilibrium between normal and tautomeric excited states is established before the emission from both states takes place. However, changes in time- and frequency-resolved fluorescence of the 5-MeOSA/DEE complex are observed due to structural relaxation within the complex, which is reflected in the dynamic Stokes shift of the tautomeric fluorescence band. The normal fluorescence band of 5-MeOSA/DEE does not exhibit marked changes within the investigated time range. A single-exponential relaxation time of 460 ps was determined for the dynamic Stokes shift of the tautomeric band, and it is attributed to a geometric change within the 5-MeOSA/DEE complex upon excitation. Since both tautomeric and normal emission bands are well resolved and exhibit different time-dependent behaviors, a double-well potential appears to be adequate to describe the excited state of the system studied.  相似文献   

4.
Photoinduced excited state dynamical processes in quinine sulphate dication (QSD) have been studied over a wide range of solute concentrations using steady state and nanosecond time-resolved fluorescence spectroscopic techniques. The edge excitation red shift (EERS) of emission maximum, emission wavelength dependence of fluorescence lifetimes and the time dependence of emission maximum are known to occur due to the solvent relaxation process. With increase in solute concentration, the emission spectrum shifts towards the lower frequencies accompanied with decrease in fluorescence intensity, however, absorption spectrum remains unchanged. A decrease in EERS, fluorescence lifetimes, time dependent fluorescence Stokes shift (TDFSS), fluorescence polarization and the solvent relaxation time (τr) is observed with the increase in solute concentration. The process of energy migration among the QSD ions along with solvent relaxation has been found responsible for the above experimental findings.  相似文献   

5.
This work reports an explanation for the unusual monoexponential fluorescence decay of 5-fluorotryptophan (5FTrp) in single-Trp mutant proteins [Broos, J.; Maddalena, F.; Hesp, B. H. J. Am. Chem. Soc. 2004, 126, 22-23] and substantially clarifies the origin of the ubiquitous nonexponential fluorescence decay of tryptophan in proteins. Our results strongly suggest that the extent of nonexponential fluorescence decay is governed primarily by the efficiency of electron transfer (ET) quenching by a nearby amide group in the peptide bond. Fluoro substitution increases the ionization potential (IP) of indole, thereby suppressing the ET rate, leading to a longer average lifetime and therefore a more homogeneous decay. We report experimental IPs for a number of substituted indoles including 5-fluoroindole, 5-fluoro-3-methylindole, and 6-fluoroindole, along with accurate ab initio calculations of the IPs for these and 20 related molecules. The results predict the IP of 5-fluorotryptophan to be 0.19 eV higher than that of tryptophan. 5-Fluoro substitution does not measurably alter the excitation-induced change in permanent dipole moment nor does it change the fluorescent state from 1La to 1Lb. In combination with electronic structure information this argues that the increased IP and the decreased excitation energy of the 1La state, together 0.3 eV, are solely responsible for the strong reduction of electron transfer quenching. 6-Fluoro substitution is predicted to increase the IP by a mere 0.09 eV. In agreement with our conclusions, the fluorescence decay curves of 6-fluorotryptophan-containing proteins are well fit using only two decay times compared to three required for Trp.  相似文献   

6.
On spectral relaxation in proteins   总被引:5,自引:0,他引:5  
During the past several years there has been debate about the origins of nonexponential intensity decays of intrinsic tryptophan (trp) fluorescence of proteins, especially for single tryptophan proteins (STP). In this review we summarize the data from diverse sources suggesting that time-dependent spectral relaxation is a ubiquitous feature of protein fluorescence. For most proteins, the observations from numerous laboratories have shown that for trp residues in proteins (1) the mean decay times increase with increasing observation wavelength; (2) decay associated spectra generally show longer decay times for the longer wavelength components; and (3) collisional quenching of proteins usually results in emission spectral shifts to shorter wavelengths. Additional evidence for spectral relaxation comes from the time-resolved emission spectra that usually shows time-dependent shifts to longer wavelengths. These overall observations are consistent with spectral relaxation in proteins occurring on a subnanosecond timescale. These results suggest that spectral relaxation is a significant if not dominant source of nonexponential decay in STP, and should be considered in any interpretation of nonexponential decay of intrinsic protein fluorescence.  相似文献   

7.
Ultrafast excited-state relaxation dynamics of a nonlinear optical (NLO) dye, (S)-(-)-1-(4-nitrophenyl)-2-pyrrolidinemethanol (NPP), was carried out under the regime of femtosecond fluorescence up-conversion measurements in augmentation with quantum chemical calculations. The primary concern was to trace the relaxation pathways which guide the depletion of the first singlet excited state upon photoexcitation, in such a way that it is virtually nonfluorescent. Ground- and excited-state (singlet and triplet) potential energy surfaces were calculated as a function of the -NO(2) torsional coordinate, which revealed the perpendicular orientation of -NO(2) in the excited state relative to the planar ground-state conformation. The fluorescence transients in the femtosecond regime show biexponential decay behavior. The first time component of a few hundred femtoseconds was ascribed to the ultrafast twisted intramolecular charge transfer (TICT). The occurrence of charge transfer (CT) is substantiated by the large dipole moment change during excitation. The construction of intensity- and area-normalized time-resolved emission spectra (TRES and TRANES) of NPP in acetonitrile exhibited a two-state emission on behalf of decay of the locally excited (LE) state and rise of the CT state with a Stokes shift of 2000 cm(-1) over a time scale of 1 ps. The second time component of a few picoseconds is attributed to the intersystem crossing (isc). In highly polar solvents both the processes occur on a much faster time scale compared to that in nonpolar solvents, credited to the differential stability of energy states in different polarity solvents. The shape of frontier molecular orbitals in the excited state dictates the shift of electron density from the phenyl ring to the -NO(2) group and is attributed to the charge-transfer process taking place in the molecule. The viscosity dependence of relaxation dynamics augments the proposition of considering the -NO(2) group torsional motion as the main excited-state relaxation coordinate.  相似文献   

8.
Tryptophan, when in a protein, typically shows multiexponential fluorescence decay kinetics. Complex kinetics prevents a straightforward interpretation of time-resolved fluorescence protein data, particularly in anisotropy studies or if the effect of a dynamic quencher or a resonance energy transfer (RET) acceptor is investigated. Here, time-resolved fluorescence data are presented of an isosteric tryptophan analogue, 5-fluorotryptophan, which when biosynthetically incorporated in proteins shows monoexponential decay kinetics. Data are presented indicating that the presence of a fluoro atom at the 5-position suppresses the electron transfer rate from the excited indole moiety to the peptide bond. This process has been related to the multiexponential fluorescence decay of tryptophan in proteins. The monoexponential decay of 5-fluorotryptophan makes it possible to measure simultaneously multiple distances between 5-fluorotryptophan and a RET acceptor. We demonstrate that for an oligomeric protein, consisting of two single-tryptophan-containing subunits, the individual distances between 5-fluorotryptophan and the single substrate binding site can be resolved using a substrate harboring a RET acceptor.  相似文献   

9.
The steady-state absorption and emission spectra and the time-resolved Soret- and Q-band excited fluorescence profiles of the model metalloporphyrin, ZnTPP, have been measured in a highly purified sample of the common room temperature ionic liquid, [bmim][PF?]. S?-S? emission resulting from Soret-band excitation behaves in a manner completely consistent with that of molecular solvents of the same polarizability. The ionic nature of the solvent and its slow solvation relaxation times have no significant effect on the nature of the radiationless decay of the S? state, which decays quantitatively to S? at a population decay rate that is consistent with the weak coupling case of radiationless transition theory (energy gap law). The ratio of the intensities of the Qα:Qβ (0-0:1-0) bands is consistent with the solvatochromic shift correlation data obtained for molecular solvents. The temporal S? fluorescence decay profiles measured at a single emission wavelength are biexponential; the longer-lived major component is similar to that observed for ZnTPP in molecular solvents, and the minor shorter-lived component is attributed to solvent relaxation processes on a nanosecond time scale.  相似文献   

10.
We report picosecond-resolved measurement of the fluorescence of a well-known biologically relevant probe, dansyl chromophore at the surface of a cationic micelle (cetyltrimethylammonium bromide, CTAB). The dansyl chromophore has environmentally sensitive fluorescence quantum yields and emission maxima, along with large Stokes shift. In order to study the solvation dynamics of the micellar environment, we measured the fluorescence of dansyl chromophore attached to the micellar surface. The fluorescence transients were observed to decay (with time constant approximately 350 ps) in the blue end and rise with similar timescale in the red end, indicative of solvation dynamics of the environment. The solvation correlation function is measured to decay with time constant 338 ps, which is much slower than that of ordinary bulk water. Time-resolved anisotropy of the dansyl chromophore shows a bi-exponential decay with time constants 413 ps (23%) and 1.3 ns (77%), which is considerably slower than that in free solvents revealing the rigidity of the dansyl-micelle complex. Time-resolved area-normalized emission spectroscopic (TRANES) analysis of the time dependent emission spectra of the dansyl chromophore in the micellar environment shows an isoemissive point at 21066 cm-1. This indicates the fluorescence of the chromophore contains emission from two kinds of excited states namely locally excited state (prior to charge transfer) and charge transfer state. The nature of the solvation dynamics in the micellar environments is therefore explored from the time-resolved anisotropy measurement coupled with the TRANES analysis of the fluorescence transients. The time scale of the solvation is important for the mechanism of molecular recognition.  相似文献   

11.
《Chemical physics letters》1985,118(5):516-521
Perylenc, 9,10-dimethylanthracene and 1,6-diphenyl-1,3,5-hexatriene (DPH) solubilized in a macroscopically aligned lyotropic nematic phase have been studied with linear dichroism (LD), steady-state and time-resolved fluorescence spectroscopy. From LD an order parameter of the fluorophore in its electronic ground state can be obtained, and from time-resolved polarized emission spectroscopy for its excited state. The order parameters of perylene in the ground and excited states are the same within experimental accuracy, but they are significantly different for 9,10-dimethylanthracene and DPH. It is concluded that the orientational distributions of fluorescent probe molecules in ground and excited states are generally not equal. Hence the order parameter of a fluorophore in a microscopically anisotropic and macroscopically isotropic system, e.g. a vesicle suspension, cannot generally be determined directly from the emission anisotropy.  相似文献   

12.
Ab initio CASPT2//CASSCF relaxation path computations are employed to determine the intrinsic (e.g., in vacuo) mechanism underlying the rise and decay of the luminescence of the anionic form of the green fluorescent protein (GFP) fluorophore. Production and decay of the fluorescent state occur via a two-mode reaction coordinate. Relaxation along the first (totally symmetric) mode leads to production of the fluorescent state that corresponds to a planar species. The second (out-of-plane) mode controls the fluorescent state decay and mainly corresponds to a barrierless twisting of the fluorophore phenyl moiety. While a "space-saving" hula-twist conical intersection decay channel is found to lie only 5 kcal mol(-1) above the fluorescent state, the direct involvement of a hula-twist deformation in the decay is not supported by our data. The above results indicate that the ultrafast fluorescence decay observed for the GFP chromophore in solution is likely to have an intrinsic origin. The possible effects of the GFP protein cavity on the fluorescence lifetime of the investigated chromophore model are discussed.  相似文献   

13.
The fluorophore in green fluorescent protein (GFP) is localized in a highly constrained environment, protected from the bulk solvent by the barrel-shaped protein matrix. We have used the wavelength-selective fluorescence approach (red edge excitation shift, REES) to monitor solvent (environment) dynamics around the fluorophore in enhanced green fluorescent protein (EGFP) under various conditions. Our results show that EGFP displays REES in buffer and glycerol, i.e., the fluorescence emission maxima exhibit a progressive shift toward the red edge, as the excitation wavelength is shifted toward the red edge of the absorption spectrum. Interestingly, EGFP displays REES when incorporated in reverse micelles of sodium bis(2-ethylhexyl)sulfosuccinate (AOT), independent of the hydration state. We interpret the observed REES to the constrained environment experienced by the EGFP fluorophore in the rigid protein matrix, rather than to the dynamics of the bulk solvent. These results are supported by the temperature dependence of REES and characteristic wavelength-dependent changes in fluorescence anisotropy.  相似文献   

14.
Proflavine (3,6-diaminoacridine) shows fluorescence emission with lifetime, 4.6 ± 0.2 ns, in all the solvents irrespective of the solvent polarity. To understand this unusual photophysical property, investigations were carried out using steady state and time-resolved fluorescence spectroscopy in the pico- and femtosecond time domain. Molecular geometries in the ground and low-lying excited states of proflavine were examined by complete structural optimization using ab initio quantum chemical computations at HF/6-311++G** and CIS/6-311++G** levels. Time dependent density functional theory (TDDFT) calculations were performed to study the excitation energies in the low-lying excited states. The steady state absorption and emission spectral details of proflavine are found to be influenced by solvents. The femtosecond fluorescence decay of the proflavine in all the solvents follows triexponential function with two ultrafast decay components (τ(1) and τ(2)) in addition to the nanosecond component. The ultrafast decay component, τ(1), is attributed to the solvation dynamics of the particular solvent used. The second ultrafast decay component, τ(2), is found to vary from 50 to 215 ps depending upon the solvent. The amplitudes of the ultrafast decay components vary with the wavelength and show time dependent spectral shift in the emission maximum. The observation is interpreted that the time dependent spectral shift is not only due to solvation dynamics but also due to the existence of more than one emitting state of proflavine in the solvent used. Time resolved area normalized emission spectral (TRANES) analysis shows an isoemissive point, indicating the presence of two emitting states in homogeneous solution. Detailed femtosecond fluorescence decay analysis allows us to isolate the two independent emitting components of the close lying singlet states. The CIS and TDDFT calculations also support the existence of the close lying emitting states. The near constant lifetime observed for proflavine in different solvents is suggested to be due to the similar dipole moments of the ground and the evolved emitting singlet state of the dye from the Franck-Condon excited state.  相似文献   

15.
Picosecond time-resolved fluorescence (TRF) spectroscopy has been used to study transient behavior in 1,6-diphenylhexa-1,3,5-triene (DPH) and 1,8-diphenylocta-1,3,5,7-tetraene (DPO). The observation is reported of short-lived fluorescence lying to shorter wavelengths than the literature spectra for these molecules. From the vibrational structure and the solvent shift of the DPO transient spectrum in benzene with respect to hexane, the pulse-limited feature can be assigned to fluorescence from vibrationally unrelaxed levels of the Bu state. In the DPH case, the relaxation time of the transient feature is greater than the laser pulse autocorrelation width, indicating that the decay of Bu state fluorescence may be limited by vibrational relaxation in the lowest excited (Ag) state.  相似文献   

16.
Steady-state and time-resolved fluorescence measurements on each of five native tryptophan residues in full-length and truncated variants of E. coli outer-membrane protein A (OmpA) have been made in folded and denatured states. Tryptophan singlet excited-state lifetimes are multiexponential and vary among the residues. In addition, substantial increases in excited-state lifetimes accompany OmpA folding, with longer lifetimes in micelles than in phospholipid bilayers. This finding suggests that the Trp environments of OmpA folded in micelles and phospholipid bilayers are different. Measurements of Trp fluorescence decay kinetics with full-length OmpA folded in brominated lipid vesicles reveal that W102 is the most distant fluorophore from the hydrocarbon core, while W7 is the closest. Steady-state and time-resolved polarized fluorescence measurements indicate reduced Trp mobility when OmpA is folded in a micelle, and even lower mobility when the protein is folded in a bilayer. The fluorescence properties of truncated OmpA, in which the soluble periplasmic domain is removed, only modestly differ from those of the full-length form, suggesting similar folded structures for the two forms under these conditions.  相似文献   

17.
The excited state dynamics of a water-soluble polymeric dye poly(S-119) was investigated using femtosecond time-resolved fluorescence upconversion. Multi-exponential relaxation of fluorescence was observed for poly(S-119) in picosecond and sub-picosecond time ranges. The azo-chromophore of the functionalized polymeric dye Sunset Yellow was used as a model compound for detailed investigations of intermolecular interactions. Excited state decay of this azo-dye can be described by a two-exponential decay law with time-constants of 0.48 ps and 1 ps. Fluorescence anisotropy decay was investigated for both systems. The difference in excited state dynamics between the polymeric dye and the azo-chromophore is explained in terms of inter-molecular interactions resulting in intra-chain aggregate formation.  相似文献   

18.
Absorption, steady state fluorescence and time-resolved fluorescence spectra of omeprazole (OMP) have been studied in solvents of different polarity and pH. With an increase in the polarity of the solvents, blue shift is observed in the longer wavelength whereas red shift is noticed in the shorter wavelength band. The dual emission observed in non-polar solvents suggests that the energy of the twisted intramolecular charge transfer (TICT) state is lower than that of the locally excited (LE) state. The normal Stokes-shifted band originates from the LE state, and the large Stokes-shifted band is due to the emission from a TICT state. The Stokes shift of OMP is correlated with various solvent polarity scales like ET(30) and f?(D,n).  相似文献   

19.
Photophysical properties of 2-(4-(dimethylamino)styryl)-1-methylpyridinium iodide (DASPMI) in various solvents were investigated using time- and space-correlated single photon counting. DASPMI is known to selectively stain mitochondria in living cells.1,2 The uptake and fluorescence intensity of DASPMI in mitochondria is a dynamic measure of membrane potential. Hence, an endeavor has been made to elucidate the mechanism of DASPMI fluorescence by obtaining spectrally resolved fluorescence decays in different solvents. A biexponential decay model was sufficient to globally describe the wavelength-dependent fluorescence in ethanol and chloroform. While in glycerol, a three-exponential decay model was necessary for global analysis. In the polar low-viscous solvent water, a monoexponential decay model fitted the decay data. The sensitivity of DASPMI to solvent viscosity was analyzed using various proportions of glycerol-ethanol mixtures. The lifetimes were found to increase with increasing solvent viscosity. The negative amplitudes of the short lifetime component found in chloroform and glycerol at the longer wavelengths validated the formation of new excited-state species from the initially excited state. Time-resolved emission spectra in chloroform and glycerol showed a biphasic increase of spectral width and emission maxima. The spectral width had an initial fast increase within 150 ps and a near constant thereafter. A three-state model of generalized scheme, on the basis of successive formation of locally excited state (LE), intramolecular charge transfer state (ICT), and twisted intramolecular charge transfer (TICT) state, has been proposed to explain the excited-state kinetics. The presumed role of solvation dynamics of ICT and TICT states leading to the asymmetrical broadening and structureless fluorescence has been substantiated by the decomposition of time-resolved emission spectra in chloroform, glycerol, and ethanol/glycerol mixtures.  相似文献   

20.
Meso-tetra(hydroxyphenyl)chlorin (m-THPC) is a new photosensitizer developed for potential use in photodynamic therapy (PDT) for cancer treatment. In PDT, the accepted mechanism of tumor destruction involves the formation of excited singlet oxygen via intermolecular energy transfer from the excited triplet-state dye to the ground triplet-state oxygen. Femtosecond transient absorption measurements are reported here for the excited singlet state dynamics of m-THPC in solution. The observed early time kinetics were best fit using a triple exponential function with time constants of 350 fs, 80 ps and > or = 3.3 ns. The fastest decay (350 fs) was attributed to either internal conversion from S2 to S1 or vibrational relaxation in S2. Multichannel time-resolved absorption and emission spectroscopies were also used to characterize the excited singlet and triplet states of the dye on nanosecond to microsecond time scales at varying concentrations of oxygen. The nanosecond time-resolved absorption data were fit with a double exponential with time constants of 14 ns and 250 ns in ambient air, corresponding to lifetimes of the S1 and T1 states, respectively. The decay of the T1 state varied linearly with oxygen concentration, from which the intrinsic decay rate constant, ki, of 1.5 x 10(6) s-1 and the biomolecular collisional quenching constant, kc, of 1.7 x 10(9) M-1 s-1 were determined. The lifetime of the S1 state of 10 ns was confirmed by fluorescence measurements. It was found to be independent of oxygen concentration and longer than lifetimes of other photosensitizers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号