首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synchronized flow traffic phase of Kerner’s three-phase traffic theory can be well reproduced by the model proposed by Jiang and Wu [R. Jiang, Q.S. Wu, J. Phys. A: Math. Gen. 36 (2003) 381]. But in the Jiang and Wu model, the rule for brake light-after switching on, the brake light will not set off until the vehicle accelerates-is obviously unrealistic. Thus we improved the model by considering the difference in accelerating and decelerating performance under different driving conditions. The fundamental diagram and spatial-temporal diagrams are analyzed. We confirmed that the new model could reproduce the synchronized flow by two methods, i.e. the traffic flow interruption effect and performing microscopic analysis of time series data. Simulation results show that the decelerating difference is an important factor to reproduce the synchronized flow. We expect that our work could make contributions to understanding the mechanism of the synchronized flow.  相似文献   

2.
Cheng-Jie Jin  Wei Wang 《Physica A》2011,390(23-24):4184-4191
In this paper we study the congested patterns upstream of an isolated on-ramp in a cellular automaton traffic flow model, which is proposed in our previous paper [Cheng-Jie Jin, Wei Wang, Rui Jiang, Kun Gao, J. Stat. Mech (2010) P03018]. The simulation results under open boundary conditions are presented by spatiotemporal diagrams. Our diagram of congested patterns is quite similar to that of the cellular automaton models within Kerner’s three-phase traffic theory, while some differences in the “moving synchronized flow pattern” (MSP) should be noted. In our model the upstream front of MSP propagates not only upstream, but also downstream. The propagation direction depends on the flow rates and densities of free flow and synchronized flow. Besides, in our model the outflow of wide moving jams or bottlenecks could be free flow or synchronized flow, as reported in many empirical data. In the dissolving of congestions, the form of free flow may be hindered and stable synchronized flow may emerge. This phenomenon can help us understand more about the outflow. All the interesting characteristics of our model are due to the nonmonotonic structure of synchronized flow branch in the fundamental diagram, which has not been found in previous models.  相似文献   

3.
Based on the Nagel-Schreckenberg (NaSch) model of traffic flow, a modified cellular automaton (CA) traffic model with the density-dependent randomization (abbreviated as the DDR model) is proposed to simulate traffic flow. The fundamental diagram obtained by simulation shows the ability of this modified NaSch model to capture the essential features of traffic flow, e.g., synchronized flow, metastable state, hysteresis and phase separation at higher densities. Comparisons are made between this DDR model and the NaSch model, also between this DDR model and the VDR model. And the underlying mechanism is analyzed. All these results indicate that the presented model is reasonable and more realistic.  相似文献   

4.
Ziqiang Wei  Yiguang Hong 《Physica A》2009,388(8):1665-1672
This paper demonstrates that patient driving habits lead to homogenous congested flow while impatient driving habits lead to wide-moving jam flow in the high density region based on the numerical simulation of the intelligent driver model proposed by M.Treiber [M. Treiber, A.Hennecke, D. Helbing, Phys. Rev. E 62 (2) (2000), 1805-1824]. In a circular one lane traffic system which includes homogeneous drivers, we obtain the stable condition of homogenous flow and the phase diagram of traffic flow based on the linearization analysis. The phase diagram shows three possible pathways of phase transition along with the increase of global density: from the homogenous free flow to the homogenous congested flow directly, from the homogenous free flow to the synchronized flow then to the homogenous congested flow, or from the homogenous free flow to synchronized flow then to the wide-moving jam flow. The paper also analyzes the traffic flow including heterogenous drivers, and the results indicate that homogenous congested flow will lose its stability when the proportion of impatient drivers reaches a critical value and some new kinds of traffic flow emerge: wide-moving jam flow or a mixture of synchronized flow and wide-moving jam flow.  相似文献   

5.
庄倩  贾斌  李新刚 《中国物理 B》2009,18(8):3271-3278
This paper modifies the weighted probabilistic cellular automaton model (Li X L, Kuang H, Song T, et al 2008 Chin. Phys. B 17 2366) which considered a diversity of traffic behaviors under real traffic situations induced by various driving characters and habits. In the new model, the effects of the velocity at the last time step and drivers' desire for acceleration are taken into account. The fundamental diagram, spatial-temporal diagram, and the time series of one-minute data are analyzed. The results show that this model reproduces synchronized flow. Finally, it simulates the on-ramp system with the proposed model. Some characteristics including the phase diagram are studied.  相似文献   

6.
This paper studies the dangerous situation (DS) in a synchronized flow model. The DS on the two branches of the fundamental diagram are investigated, respectively. It is shown that different relationship between DS probability and the density exists in the synchronized flow and in the jams. Moreover, we prove that there is no DS caused by non-stopped car although the model itself is a non-exclusion process. We classify the DS into four sub-types and study the probability of these four sub-types. The simulation result is consistent with the real traffic.  相似文献   

7.
金诚杰  王炜  姜锐 《中国物理 B》2014,23(2):24501-024501
In this paper,we further analyze our cellular automaton(CA)traffic flow model.By changing some parameters,the characteristics of our model can be significantly varied,ranging from the features of phase transitions to the number of traffic phases.We also review the other CA models based on Kerner’s three-phase traffic theory.By comparisons,we find that the core concepts for modeling the synchronized flow in these models are similar.Our model can be a good candidate for modeling the synchronized flow,since there is enough flexibility in our framework.  相似文献   

8.
Starting from the instability diagram of a traffic flow model, we derive conditions for the occurrence of congested traffic states, their appearance, their spreading in space and time, and the related increase in travel times. We discuss the terminology of traffic phases and give empirical evidence for the existence of a phase diagram of traffic states. In contrast to previously presented phase diagrams, it is shown that “widening synchronized patterns” are possible, if the maximum flow is located inside of a metastable density regime. Moreover, for various kinds of traffic models with different instability diagrams it is discussed, how the related phase diagrams are expected to approximately look like. Apart from this, it is pointed out that combinations of on- and off-ramps create different patterns than a single, isolated on-ramp.  相似文献   

9.
Kun Gao  Rui Jiang  Bing-Hong Wang  Qing-Song Wu 《Physica A》2009,388(15-16):3233-3243
In this paper, we incorporate a limitation on the interaction range between neighboring vehicles into the cellular automaton model proposed by Gao and Jiang et al. [K. Gao, R. Jiang, S. X. Hu, B. H. Wang and Q. S. Wu, Phys. Rev. E 76 (2007) 026105], which was established within the framework of Kerner’s three-phase traffic theory and has been shown to be able to reproduce the three-phase traffic flow. This modification eliminates an unrealistic phenomenon found in the previous model, where the velocity-adaptation effect between neighboring vehicles can exist even if those vehicles are infinitely far away from each other. Therefore, in the improved model, we regulate that such interactions can only occur within a finite distance. For simplicity, we suppose a constant value to describe this distance in this paper. As a result, when compared to the previous model, the improved model mainly simulates the following results which are believed to be an improvement. (1) The improved model successfully reproduces the expected discontinuous transition from free flow to synchronized flow and the related “moving synchronized flow pattern”, which are both absent in the original model but have been observed in real traffic. (2) The improved model simulates the correlation functions, time headway distributions and optimal velocity functions which are all more consistent with the empirical data than the previous model and most of the other models published before. (3) Together with the previous two models considering the velocity-difference effect, this model finally accomplishes a significative process of developing traffic flow models from the traditional “fundamental diagram approach” to the three-phase traffic theory. This process should be helpful for us to understand the traffic dynamics and mechanics further and deeper.  相似文献   

10.
We propose a simple cellular automaton for traffic flow within the fundamental diagram, which could reproduce aspects of the three-phase theory. This so-called average space gap model (ASGM) is based on the Nagel–Schreckenberg model with additional slow-to-start and anticipation rules. The anticipation rule takes into account the average space gap of multiple leading vehicles and conveys to the model its three-phase property. Due to the anticipation rule, ASGM can show the transition from free flow to synchronized flow. Due to the slow-to-start rule, ASGM can show the spontaneous wide moving jam emerges in the synchronized flow. Simulations are carried out for periodic and open boundary conditions. Under periodic boundary condition, the fundamental diagram, and the properties of synchronized flow are studied. Under open boundary condition, different congested patterns induced by an on-ramp are analyzed. We found that the ASGM produces the same spatiotemporal dynamics as many of the more complex three-phase models. Due to its simplicity and its close relation to conventional slow-to-start models, this model can shed light on the relation between ‘two-phase’ and three-phase models.  相似文献   

11.
We propose another possible mechanism of synchronized flow, i,e. that a time headway dependent randomization can exhibit synchronized flow. Based on this assumption, we present a new cellular automaton (CA) model for traffic flow, in which randomization effect is enhanced with the decrease of time headway. We study fundamental diagram and spatial-temporal diagrams of the model and perform microscopic analysis of time series data, which shows the model could reproduce synchronized flow as expected. It is also shown that a spontaneous transition from synchronized flow to jam could be observed by incorporating slow-to-start effect into the model. We expect that our work could contribute to the understanding of the real origin of synchronized flow.  相似文献   

12.
The empirical data on traffic flows collected in the linear portion of the Lefortovsky tunnel of the third Moscow transport ring were analyzed. It was shown that the crowded traffic observed in the tunnel is indeed characterized by the synchronized vehicular traffic. In particular, long-range spatial correlations in their motion velocities and the region of “widely scattered states”, i.e., two typical properties of the synchronized vehicular traffic phase, were detected in the fundamental diagram. Moreover, the phase diagram of the traffic flow dynamics showed two regions with essentially different properties, which are separated by a narrow layer with a virtually fixed vehicle density. One of them corresponds to synchronized vehicular traffic and contains a core of chaotic dynamics. Another region corresponds to irreversible formation of wide moving jams.  相似文献   

13.
We calculate the hydrodynamic flow field generated far from a cilium which is attached to a surface and beats periodically. In the case of two beating cilia, hydrodynamic interactions can lead to synchronization of the cilia, which are nonlinear oscillators. We present a state diagram where synchronized states occur as a function of the distance of cilia and the relative orientation of their beat. Synchronized states occur with different relative phases. In addition, asynchronous solutions exist. Our work could be relevant for the synchronized motion of cilia generating hydrodynamic flows on the surface of cells.  相似文献   

14.
宁宏新  薛郁 《中国物理 B》2012,21(4):40506-040506
In this paper, the characteristics of synchronized traffic in mixed traffic flow are investigated based on the braking light model. By introducing the energy dissipation and the distribution of slowdown vehicles, the effects of the maximum velocity, the mixing ratio, and the length of vehicles on the synchronized flow are discussed. It is found that the maximum velocity plays a great role in the synchronized flow in mixed traffic. The energy dissipation and the distribution of slowdown vehicles in the synchronized flow region are greatly different from those in free flow and a traffic jamming region. When all of vehicles have the same maximum velocity with V max > 15, the mixed traffic significantly displays synchronized flow, which has been demonstrated by the relation between flow rate and occupancy and estimation of the cross-correlation function. Moreover, the energy dissipation in the synchronized flow region does not increase with occupancy. The distribution of slowdown vehicles shows a changeless platform in the synchronized flow region. This is an interesting phenomenon. It helps to deeply understand the synchronized flow and greatly reduce the energy dissipation of traffic flow.  相似文献   

15.
《Physica A》2006,371(2):674-682
We study the phase transition on a highway in a modified anisotropic continuum model with an on-ramp, which is recently developed by Gupta and Katiyar (J. Phys. A: Math. Nucl. Gen. 38 (2005) 4069]. To investigate whether this model can describe several distinct traffic states that are identified from real-traffic data [Kerner and Rehborn, Phys. Rev. Lett. 79 (1997) 4030; Kerner, Phys. Rev. Lett. 81 (1998) 3797], we carry out numerical simulations with an open boundary condition. The observed transition between free flow and various types of congested flow such as localized clusters, stop-and-go traffic and different kinds of synchronized traffic flow is obtained by applying a triggering pulse through an on-ramp in our simulation.We present the phase diagram for three representative values of the upstream boundary flux and for the whole range of the on-ramp flux. Several states like pinned localized cluster, triggered stop-and-go, recurring hump state, the oscillatory congested traffic and the homogeneous congested traffic are observed in phase transition from free flow to traffic-jam state. The phase diagram for our model near on-ramp is consistent with the results obtained by Lee et al. [Phys. Rev. E 59(5) (1999) 5101]. The results suggest that the modified model is able to describe all the three phases of traffic-flow theory developed by Kerner [Physica A 333 (2004) 379].  相似文献   

16.
Recently, a number of efforts are underway to investigate inter-vehicle communications (IVC). This paper studies the instantaneous information propagation behaviours based on IVC in three different tragic situations (free flow, synchronized flow and stop-and-go waves) in a cellular automaton model. It is shown that different behaviours appear in stop-and-go waves from those in free flow and synchronized flow. While the distribution of Multi-hop Communication Distance (MhCD) is either exponential or uniform in free flow and synchronized flow, the distribution of MhCD is either exponential or with a single peak in stop-and-go waves.  相似文献   

17.
《Physica A》2002,303(1-2):239-250
Pedestrian flow is investigated under the open boundaries in a T-shaped channel where the branch flow joins the main flow at the junction. The pedestrian merging flow is simulated by the use of the lattice-gas model of biased random walkers. When the main flow rate increases under the constant value of branch flow rate, the clogging transitions occur at the main flow or branch flow or both flows. It is shown that the dynamical phase transitions depend on both inlet densities. The four distinct phases are found. The phase diagram is presented for the distinct phases. The scaling of saturated flow rate and transition point is shown. The flow rate exhibits the universal scaling form.  相似文献   

18.
We study the traffic states and jamming transitions induced by a bus (slow car) in a two-lane traffic of cars. We use the dynamic model which is an extended one of the optimal velocity model to take into account the lane changing. The fundamental (flow-density) diagram is presented. The fundamental diagram changes highly by introducing a bus on a two-lane roadway. It is found that there are the six distinct states for the two-lane traffic flow including a bus. The spatio-temporal patterns are presented for the distinct traffic states. The dynamical state of traffic changes with density of cars. It is shown that the dynamical transitions among the distinct traffic states occur at some values of density. The phase diagram (region map) is shown for the two-lane traffic flow including a bus.  相似文献   

19.
张柠溪  祝会兵  林亨  黄梦圆 《物理学报》2015,64(2):24501-024501
基于NaSch元胞自动机交通流模型, 考虑司机复杂的性格特征和驾驶行为差异, 引入相邻车辆的动态车间距, 提出了一个改进的单车道元胞自动机交通流模型. 通过数值模拟得到了流量-密度关系, 在中高密度区域呈现出一种弥散分布的状态而非惟一确定的关系, 再现了交通系统中的自由流、同步流及宽幅运动阻塞, 表明道路上即使没有交通瓶颈也会出现同步流和拥挤交通, 同时揭示了在同步流中存在的车辆高速跟驰现象, 高速跟驰率与交通实测结果较为符合.  相似文献   

20.
The studies of traffic flows are reviewed and different approaches in the analysis of the phase states of flows and the fundamental diagram are described. A comparison with the experimental results is performed. The attention is focused on the analysis of the empirical data collected on the linear branch of the Lefortovo tunnel (Moscow’s third ring road). The analysis performed gives a fundamental diagram with a very complex structure. It is shown that the congested traffic flow observed in the tunnel can be considered indeed as cooperative vehicle motion. In particular, it is established that there are long-scale spatial correlations in the motion speed and that the fundamental diagram contains a region of widely scattered states. These two features are typical of phase cooperative vehicle motion. The phase portrait of the traffic flow dynamics is analyzed. Two regions with radically different properties, separated by a narrow layer with a nearly constant vehicle density, are revealed. One of these regions corresponds to cooperative vehicle motion and contains a core with chaotic dynamics. The other part of the phase plane describes the jammed phase formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号