首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The oxidative dehydrogenation of ethane into ethylene has been investigated on metal oxide-based sulfated zirconia catalysts at temperatures of 400–600°C. It is found that the activity and selectivity toward ethylene depend on the nature of metal oxide and temperature and that Ni and V oxides supported on sulfated zirconia exhibited higher ethylene yields.  相似文献   

2.
The oxidative dehydrogenation of ethane into ethylene by CO2 over a series of silica-supported chromium oxide catalysts was investigated. The results showed that the catalysts were effective for the reaction and CO2 in the feed promoted the catalytic activity. The 5%Cr/SiO2 catalyst exhibited the excellent performance with 30.7% ethane conversion and 96.5% ethylene selectivity at 700oC. ESR and UV-DRS were used to probe the active sites and the species with high valent states (Cr5+ and/or Cr6+) were found to be important for the reaction.  相似文献   

3.
亚微米ZSM-5负载Cr催化剂上乙烷CO2气氛下脱氢制乙烯   总被引:1,自引:0,他引:1  
石油资源的日趋短缺使天然气和页岩气的开发利用受到重视,因而低碳烷烃脱氢制取低碳烯烃也随之引起了人们越来越多的关注.由于乙烷纯脱氢反应的平衡收率低,能耗高,而氧气氧化脱氢又易将乙烷深度氧化为CO2或CO,因此开发具有反应条件温和、装置投资和操作费用低等优势的CO2气氛下乙烷脱氢的技术路线日益得到重视. CrOx是该反应理想的催化剂之一, CO2的加入可使CrOx对乙烷脱氢的催化活性提升3倍,然而受困于CrOx过小的比表面积,通常将CrOx制备成负载型催化剂使用. CrOx的常见载体有Al2O3, ZrO2和SiO2等氧化物及MCM-41, SBA-15, SBA-1和MSU-x等介孔硅材料, ZSM-5作为载体负载CrOx用于低碳烷烃脱氢的研究则较少,所得结果也不甚理想.我们采用亚微米尺寸的ZSM-5作为载体制备了负载型CrOx催化剂,研究了其在CO2气氛下催化乙烷脱氢反应,发现该催化剂具有非常优异的脱氢活性,高硅铝比和Na型的ZSM-5作载体对反应更加有利,而且在反应进行50 h后,催化剂依然保持很好的活性和很高的乙烯收率,这是在一般负载型CrOx催化剂上所不能实现的.
  X射线光电子能谱(XPS)表征发现, Na型ZSM-5载体制得的催化剂具有更高的Cr6+/Cr3+比.一般认为, Cr6+是Cr系催化剂进行低碳烷烃脱氢反应时的活性位(或活性位前驱体),因此可以初步判定, Na型载体具有很好催化效果的原因可能是由它制得的催化剂具有更多的反应活性位.程序升温还原(H2-TPR)表征结果证实了这一点, Na型载体明显具有更高的H2消耗量;也就是说, Na型载体制得的催化剂具有更多的可还原Cr物种,即脱氢活性位.进一步表征发现,反应活性还与Cr物种存在形式有关.文献报道,低聚态的Cr物种和孤立态的Cr物种比Cr2O3有更好的催化活性.通过漫反射紫外-可见光谱(UV-Vis)对Cr物种的存在形态进行表征后发现, Na型载体上Cr主要以四配位形式存在,而在H型载体上出现了对应于六配位的Cr物种;激光Raman表征结果表明, Na型载体上出现的都是低聚态Cr物种和孤立态Cr物种,而H型载体上出现了明显的对应于α-Cr2O3的峰,说明相较于H型载体, Na型载体更有利于Cr组分分散,这也是Na型ZSM-5载体催化剂具有更高活性的原因之一.
  CO2引入后对乙烷脱氢反应具有明显的促进作用,特别是在CO2/C2H6=5时,催化剂上C2H6转化率是非CO2气氛下的3.2倍;同时, CO2的引入也提高了脱氢反应的稳定性.在非CO2气氛下,反应进行6 h后, C2H6转化率降低到初活性的60%左右,而在CO2/C2H6=5时,相同时间内催化剂活性下降仅有5%左右.实验分析了CO2对脱氢反应具有促进作用的原因.在脱氢反应温度650 oC下, CO2/H2=1时进行了逆水煤气反应测试,发现CO2的转化率达到22.5%,说明引入CO2后可以通过逆水煤气反应有效地消耗掉乙烷脱氢反应生成的H2,从而促进反应向脱氢方向进行; CO2的引入也可以促进Cr物种的CrOx/CrOx-1循环,从而提高催化剂效率,减缓催化剂失活; CO2还可与反应中生成的积碳类物质发生Boudouard反应,将反应活性位暴露出来,从而提高催化剂的稳定性. CO2气氛下反应6 h后催化剂的积碳量为3.0%,低于非CO2气氛下的3.4%,同时在脱氢反应中生成的CO量与消耗掉的CO2量的比值约为1.4,也有力地说明Boudouard反应的存在.  相似文献   

4.
采用浸渍法制备了一系列MTiO3(M=Mg、Ca、Sr、Ba)钙钛矿型氧化物负载的Ni催化剂(Ni的负载量为5%,质量分数),通过XRD、氮吸附、H2-TPR、CO2-TPD、XPS和TG等技术对催化剂进行了表征,对其甲烷二氧化碳重整反应的催化性能进行了研究。结果表明,M为不同碱土金属时,催化剂上金属载体相互作用、活性组分的表面原子浓度以及催化剂晶格氧的流动性都发生了变化。Ni/CaTiO3催化剂上金属载体相互作用较强,还原出的活性组分Ni的含量较多,晶格氧流动性较高,因而具有较好的催化性能。SrTiO3载体颗粒粒径较大,Ni/SrTiO3催化剂上Ni的分散度不高,金属载体的相互作用较弱,表面Ni原子相对含量较低,晶格氧的流动性较差,其甲烷二氧化碳重整反应活性也最低。  相似文献   

5.
Oxydative dehydrogenation of ethane to ethelene over Ga-, Fe- and Cr-oxide systems has been investigated. CO2 was used as an oxidizing agent. The activity and stability of the synthesized catalysts were studied. The most efficient catalytic system was selected and the experimental conditions for the optimal conversion/selectivity ratio were found.  相似文献   

6.
Summary A number of supported metal oxide catalysts were prepared and tested for nitrogen oxide removal from diesel engine exhaust. More than 50% of nitrogen oxides were removed using many prepared catalysts in the temperature range of 150oC-350oC.  相似文献   

7.
溶胶-凝胶法制备Cr-基催化剂及其CO2氧化乙烷制乙烯   总被引:1,自引:0,他引:1  
以硝酸铬为Cr源,正硅酸乙酯为Si源,采用溶胶-凝胶法制备了Cr质量分数为2.5%~10%的Cr-基催化剂;采用XRD、BET、SEM、H2 TPR等分析测试技术对催化剂的结构进行了表征;在微型固定床反应器中对催化剂乙烷二氧化碳氧化脱氢制乙烯的催化性能进行了评价,并考察了反应条件对催化性能的影响。结果表明,催化剂中Cr的质量分数大于5%时,Cr的物相为Cr2O3,但Cr质量分数较低时,检测不到Cr的物相;Cr质量分数为5%的催化剂具有较大的比表面积,Cr质量分数变大或变小,催化剂的比表面积都会减小;催化剂的孔径在2nm左右,并与Cr的质量分数关系不大;Cr质量分数为5%的催化剂具有最好的催化活性,在750℃的反应条件下,乙烷和二氧化碳的转化率可达79.29%和23.74%,乙烯的收率可达67.91%;Cr质量分数为5%的催化剂具有适宜的氧化还原性能,这有利于乙烷和二氧化碳的转化。  相似文献   

8.
The effect of basic and rare earth metal oxides on the stability of nickel-based catalysts for the CO2 reforming of CH4 has been studied. The addition of metal oxides increased the stability of Ni-based catalysts and reversed the values of the reaction orders with respect to both CH4 and CO2. In the presence of metal oxides, the values of the reaction orders with respect to CO2 partial pressure followed the same trend of catalyst stability.  相似文献   

9.
Methods of the preparation of catalysts for alkane skeletal isomerization based on uniform nanoparticles of sulfated zirconia anchored to different supports were investigated. These catalysts were characterized by using the ICP, HRTEM and BET techniques. The activities of the catalysts in the reaction of n-butane isomerization were measured and compared with those of bulk catalysts.  相似文献   

10.
The dehydrogenation of isobutane (IB) to produce isobutene coupled with reverse water gas shift in the presence of carbon dioxide was investigated over the catalyst Cr2O3 supported on active carbon (Cr2O3/AC). The results illustrated that isobutane conversion and isobutene yield can be enhanced through the reaction coupling in the presence of carbon dioxide. Moreover, carbon dioxide can partially eliminate carbonaceous deposition on the catalyst and keep the active phase (Cr2O3), which are then helpful to alleviate the catalyst deactivation.  相似文献   

11.
Catalysts based on mixed oxide of MoVMn are active at relatively low temperature for oxidative dehydrogenation of ethane. Incorporation of tungsten into MoVMn oxides enhances the catalytic activity. Enhancement of the activity is explained in the light of acid-base interaction accompanied with a redox mechanism of surface reoxidation. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
Oxidative dehydrogenation of ethylbenzene with carbon dioxide was carried out over ZSM-5 zeolite-supported iron oxide catalysts. In the presence of carbon dioxide, ethylbenzene was predominantly converted into styrene by oxidation. It was found that carbon dioxide in this reaction plays a role as a soft oxidant to greatly improve catalytic activity. An active phase for the dehydrogenation with carbon dioxide was suggested as rather reduced and isolated magnetite-like phase having oxygen deficiency in zeolite matrix.  相似文献   

13.
制备了纳米碳材料负载铂的催化剂,通过N2吸附、TEM、XRD技术分别对载体的BET比表面积和催化剂结构、形貌和粒径大小进行了表征。考察了不同催化剂在环己烷脱氢反应中的催化性能以及温度对纳米碳颗粒负载铂催化剂活性的影响。结果表明,锚定在不同碳载体上的铂有较好的分散性,粒径较小,粒度分布范围较窄并且具有相同的晶型结构。孔状纳米碳颗粒负载铂催化剂的活性高于碳纳米管和高比表面的活性炭负载铂催化剂,并且在低温条件下已经显示了较高的活性,尤其是中空碳颗粒负载铂催化剂在环己烷脱氢反应中显示了好的活性和稳定性。  相似文献   

14.
Para-selectivity of ZSM-5 zeolites with similar bulk Si/Al ratio, but different particle size and surface Al concentration has been investigated in toluene disproportionation. Results showed that enhancedpara-selectivity is a consequence not only of the particle size but also of the external surface aluminium concentration in the particles.  相似文献   

15.
Summary The dehydrogenation of isobutane to isobutene in the presence of carbon dioxide was carried out over supported vanadium oxide catalysts. The influence of the support on the catalytic performance was investigated. The isobutane conversion and isobutene selectivity in the presence of carbon dioxide were compared with the results obtained during the dehydrogenation reaction in the presence of helium (inert gas). The catalysts were characterized by temperature-programmed techniques (TPR, TPD-NH3, TPD-CO2).  相似文献   

16.
The oxidative dehydrogenation of ethane over NiO-loaded MgO with high surface area was carried out using a fixed-bed flow reactor at 600 °C under atmospheric pressure.

At 600 °C, the oxidative dehydrogenation of ethane (C2H6/O2 = 1) without dilution with an inert gas resulted in C2H6 conversion of 68.8% and a high C2H4 selectivity of 52.8%, which corresponds to a C2H4 yield of 36.3%. In addition, the catalytic activity did not decrease for at least 10 h. X-ray photoelectron spectra of the catalysts after the reaction exhibited that the initial valence state of Ni2+ (NiO) was maintained during the oxidative dehydrogenation of ethane. However, when NiO-loaded MgO was reduced with H2 prior to the reaction, C2H4 selectivity decreased to nearly zero and high CO and H2 selectivities were observed with the C2H6 conversion of 50 %, indicating that partial oxidation of C2H6 proceeded. Therefore, it seems important to keep Ni species as an oxide phase on the support, and for this purpose, use of the high surface area of MgO is essential.  相似文献   


17.
在乙腈体系中,以不同的乙酸盐作催化剂,研究了CO2与二醇合成环状碳酸酯的反应.乙腈在反应过程中不仅是溶剂,而且还起到了脱水剂的作用,促进了反应的进行.以1,2-丙二醇为反应物对催化剂进行筛选,发现无水乙酸锌具有最高的催化活性.在无水乙酸锌上考察了二氧化碳和不同二醇的反应,结果表明,五元环碳酸酯的产率明显高于六元环碳酸酯,其中碳酸丙烯酯的产率最高.以1,2-丙二醇为反应基质,无水乙酸锌为催化剂,确定了最佳反应条件,1,2-丙二醇100 mmol,乙睛10 mL,催化剂2.5 mmol,反应压力10 MPa,温度170 ℃,反应12 h.在此条件下,碳酸丙烯酯的产率达到了24.2%,1,2-丙二醇的转化率为38.9%.  相似文献   

18.
The isomerization of n-butane to i-butane has been studied at 11 bar in a microflow reactor over sulfated zirconia (SZ) and platinum containing sulfated zirconia (Pt-SZ) catalysts. In the presence of H2 a significantly higher temperature is required for isomerization over SZ than in its absence. The rate over SZ is higher with n-butane containing 33 ppm butene as an impurity than with a feed that is pre-equilibrated over a Pt/SiO2 catalyst to a much lower butene content. Over Pt-SZ the reaction rate is higher, because any butene consumed is rapidly regenerated; the conversion is perfectly stable in 83 h runs, selectivity to i-butane is 95%; i-pentane and propane are the main byproducts. The activation energy is 53 kJ mol−1. Upon increasing the pressure of H2 from 1.1 to 6.6 bar, the reaction rate was found to decrease in a perfectly reversible fashion. Kinetic analysis reveals that the reaction order is negative in H2 (−1.1 to −1.3 depending on the temperature) and positive in n-butane (+ 1.3 to +1.6), indicating that the mechanism of this isomerization is intermolecular: butene is formed and reacts with adsorbed C4-carbenium ions to adsorbed C8 intermediates which isomerize and undergo β-fission to fragments with i-C4 structure. This mechanism is confirmed over Pt-SZ by isotopic labelling experiments, though at much lower pressure, using double labelled 13CH3---CH2---CH2---13CH3. The primary reaction product consists of i-butane molecules, containing zero, one, two, three and four 13C atoms in a binomial distribution.  相似文献   

19.
Catalytic performance of Al-MCM-41-supported vanadia catalysts (V/Al-MCM-41) with different V loading was investigated for oxidative dehydrogenation of ethylbenzene to styrene (ST) with CO2 (CO2-ODEB). For comparison, pure silica MCM-41 was also used as support for vanadia catalyst. The catalysts were characterized by N2 adsorption, X-ray diffraction (XRD) pyridine-Fourier-transform infrared spectroscopy, H2-temperature-programmed reduction, thermogravimetric analysis (TGA), UV-Raman, and diffuse reflectance (DR) UV–vis spectroscopy. The results indicate that the catalytic behavior and the nature of V species depend strongly on the V loading and the support properties. Compared with the MCM-41-supported catalyst, the Al-MCM-41-supported vanadia catalyst exhibits much higher catalytic activity and stability along with a high ST selectivity (>98%). The superior catalytic performance of the present V/Al-MCM-41 catalyst can be attributed to the Al-MCM-41 support being more favorable for the high dispersion of V species and the stabilization of active V5+ species. Together with the characterization results of XRD, TGA, and DR UV–Vis spectroscopy, the deep reduction of V5+ into V3+ during CO2-ODEB is the main reason for the deactivation of the supported vanadia catalyst, while the coke deposition has a less important impact on the catalyst stability.  相似文献   

20.
<正>LiCl-promoted superbase catalysts were found to be stable and highly selective to ethene for oxidative dehydrogenation of ethane,giving 84%ethane conversion and 74%ethene yield at 923 K.Results indicated that the stronger the basicity of LiC1-based catalysts,the better the catalytic performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号