首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An automated reaction mechanism generator is used to develop a predictive, comprehensive reaction mechanism for the high-temperature oxidation chemistry of n-butanol. This new kinetic model is an advancement of an earlier model, which had been extensively tested against earlier experimental data (Harper et al., Combust. Flame, 2011, 158, 16-41). In this study, the model's predictive capabilities are improved by targeting isomer-resolved quantitative mole fraction profiles of flame species in low-pressure flames. To this end, a total of three burner-stabilized premixed flames are isomer-selectively analyzed by flame-sampling molecular-beam time-of-flight mass spectrometry using photoionization by tunable vacuum-ultraviolet synchrotron radiation. For most species, the newly developed chemical kinetic model is capable of accurately reproducing the experimental trends in these flames. The results clearly indicate that n-butanol is mainly consumed by H-atom abstraction with H, O, and OH, forming predominantly the α-C(4)H(9)O radical (CH(3)CH(2)CH(2)˙CHOH). Fission of C-C bonds in n-butanol is only predicted to be significant in a similar, but hotter flame studied by O?wald et al. (Combust. Flame, 2011, 158, 2-15). The water-elimination reaction to 1-butene is found to be of no importance under the premixed conditions studied here. The initially formed isomeric C(4)H(9)O radicals are predicted to further oxidize by reacting with H and O(2) or to decompose to smaller fragments via β-scission. Enols are detected experimentally, with their importance being overpredicted by the model.  相似文献   

2.
A fuel-rich, nonsooting, premixed laminar cyclopentene flame (phi = 2.0) at 37.6 Torr (50 mbar) is investigated by flame-sampling photoionization molecular-beam mass spectrometry utilizing vacuum-ultraviolet synchrotron radiation. Mole fractions as a function of distance from the burner are measured for 49 intermediates with ion masses ranging from 2 (H2) to 106 (C8H10), providing a broad database for flame modeling studies. The isomeric composition is resolved for most species, and the identification of several C4Hx, C7H6, and C7H8 isomers is discussed in detail. The presence of C5H5CCH/C5H4CCH2 and cycloheptatriene is revealed by comparisons between flame-sampled photoionization efficiency data and theoretical simulations, based on calculated ionization energies and Franck-Condon factors. This insight suggests a new potential molecular- weight growth mechanism that is characterized by C5-C7 ring enlargement reactions.  相似文献   

3.
A low-pressure premixed gasoline/oxygen/argon flame was studied by using molecular-beam sampling mass spectrometry combined with a tunable synchrotron radiation photoionization technique. The photoionization time-of-flight mass spectrum of gasoline/oxygen/argon in the flame was recorded and the ionization energies of some species were detected. Compared with the ionization energies in literatures, the isomers were uniquely identified. The reaction process of five typical hazardous products was empirically analyzed by species concentration profiles. The experimental results are helpful in establishing the kinetic modeling for a gasoline/oxygen flame.  相似文献   

4.
Photoionization mass spectrometry as a powerful analytical method has been widely utilized and provided valuable insight in the field of gas-phase reactions. Here, a highly sensitive vacuum ultraviolet (VUV) photoionization time-of-flight mass spectrometer combined with a microwave discharge generator and a fast flow tube reactor has been developed to study radical reactions of atmospheric and combustion interests. Two kinds of continuous light sources, the tunable VUV synchrotron radiation at Hefei, China for isomer-specific product detection and a commercial krypton discharge lamp for time-consuming kinetic measurements, are employed as photoionization sources in the apparatus. A multiplexed detection with high sensitivity (the limit of detection ∼0.8 ppb) and high mass resolution (MM ∼ 2100) has been approached. As representative examples, the self-reaction of the methyl radical, CH3, and the reaction of the methyl radical with molecular oxygen are studied and multiple species including reactive radicals and isomeric/isobaric products are detected and identified. In addition, some preliminary results related to the reaction kinetics are also presented.  相似文献   

5.
Measurements of the composition of reaction intermediates in low-pressure premixed flat flames of three simple esters, the methyl butanoate (MB), methyl isobutanoate (MIB), and ethyl propanoate (EP) isomers of C(5)H(10)O(2), enable further refinement and validation of a detailed chemical reaction mechanism originally developed in modeling studies of similar flames of methyl formate, methyl acetate, ethyl formate, and ethyl acetate. Photoionization mass spectrometry (PIMS), using monochromated synchrotron radiation, reveals significant differences in the compositions of key reaction intermediates between flames of the MB, MIB, and EP isomers studied under identical flame conditions. Detailed kinetic modeling describes how these differences are related to molecular structures of each of these isomers, leading to unique fuel destruction pathways. Despite the simple structures of these small esters, they contain structural functional groups expected to account for fuel-specific effects observed in the combustion of practical biodiesel fuels. The good agreement between experimental measurements and detailed reaction mechanisms applicable to these simple esters demonstrates that major features of each flame can be predicted with reasonable accuracy by building a hierarchical reaction mechanism based on three factors: (1) unimolecular decomposition of the fuel, especially by complex bond fission; (2) H-atom abstraction reactions followed by β-scission of the resulting radicals, leading to nearly all of the intermediate species observed in each flame; (3) the rates of H-atom abstraction reactions for each alkoxy or alkyl group (i.e., methoxy, ethoxy, methyl, ethyl, propyl) are effectively the same as in other ester fuels with the same structural groups.  相似文献   

6.
二甲醚和乙醇低压层流预混火焰的对比研究   总被引:1,自引:0,他引:1  
利用分子束质谱结合真空紫外同步辐射光电离技术对相同燃烧条件下的低压层流预混二甲醚/氧气/氩气和乙醇/氧气/氩气火焰进行研究.通过测量光电离效率曲线,识别了二甲醚和乙醇火焰的中间物种,得到相应的火焰质谱;通过测量火焰中各物种在燃烧炉炉膛各位置的电离信号强度,得到了各物种的摩尔分数分布曲线.结合两种燃料分子不同的化学结构及详细的燃烧化学反应机理,分析了两火焰中间物种生成特性的异同.研究结果表明:甲醛为两火焰中最主要的C1中间物种;二甲醚火焰趋向于生成C1中间物种,C2物种摩尔分数较低;乙醇火焰中乙醛、乙烯、乙炔和乙烯酮等C2中间物种的摩尔分数明显高于二甲醚火焰中的值.  相似文献   

7.
This work reports an investigation on laminar premixed flames of tetralin at 30 Torr and equivalence ratios of 0.7 and 1.7. Measurements of the chemical structure including identification and mole fraction measurements of free radicals, isomers, and polycyclic aromatic hydrocarbons (PAHs) were performed using synchrotron vacuum ultraviolet photoionization mass spectrometry (SVUV‐PIMS). A kinetic model with 296 species and 1 577 reactions was developed and validated against the flame chemical structure data measured in this work. Modeling analysis reveals the key reaction pathways in tetralin decomposition and PAHs formation. The H‐atom abstraction reactions by H, O, and OH are found to control the consumption of tetralin in the lean flame, while those by H play the dominant role in the rich flame. Indene and naphthalene have very high concentration levels in the rich tetralin flame due to the existence of direct formation pathways from the decomposition of tetralin. The two bicyclic PAHs and their radicals play significant roles in the PAHs growth process of tetralin combustion, which results in the high sooting tendency of tetralin compared to those of alkylbenzenes with smaller or same carbon atom numbers.  相似文献   

8.
The allyl radical has been observed in a low-pressure premixed gasoline/oxygen/argon flame by using tunable vacuum ultraviolet photoionization mass spectrometry. The ionization potential of the allyl radical is derived to be (8.13 + 0.02) eV from photoionization efficiency curve. In addition, a high level ab initio Gaussian-3(G3) method was used to calculate the energies of the radical and its cation. The calculated adiabatic ionization potential is 8.18 eV, which is in excellent agreement with the experimental value. The result is helpful for identifying the allyl radical formed from other flames and for understanding the mechanism of soot formation.  相似文献   

9.
Before the recent discovery that enols are intermediates in many flames, they appeared in no combustion models. Furthermore, little is known about enols' flame chemistry. Enol formation in low-pressure flames takes place in the preheat zone, and its precursors are most likely fuel species or the early products of fuel decomposition. The OH + ethene reaction has been shown to dominate ethenol production in ethene flames although this reaction has appeared insufficient to describe ethenol formation in all hydrocarbon oxidation systems. In this work, the mole fraction profiles of ethenol in several representative low-pressure flames are correlated with those of possible precursor species as a means for judging likely formation pathways in flames. These correlations and modeling suggest that the reaction of OH with ethene is in fact the dominant source of ethenol in many hydrocarbon flames, and that addition-elimination reactions of OH with other alkenes are also likely to be responsible for enol formation in flames. On this basis, enols are predicted to be minor intermediates in most flames and should be most prevalent in olefinic flames where reactions of the fuel with OH can produce enols directly.  相似文献   

10.
Lozovsky VA  Rahinov I  Ditzian N  Cheskis S 《Faraday discussions》2001,(119):321-35; discussion 353-70
Absolute concentration profiles of NH2 and HNO have been measured in low-pressure methane/air flat flames doped with small amounts of NO and N2O. Addition of a small amount of nitrogen oxides does not alter significantly the flame speeds, temperature profiles and other parameters of the relatively well-understood methane/air flames. Intracavity laser absorption spectroscopy (ICLAS) and cavity ring-down spectroscopy (CRDS) are high-sensitivity techniques used to measure absolute concentrations of minor species in flames. In this work ICLAS is used to monitor NH2 and HNO, whereas CRDS is used for temperature measurements using OH spectra in the UV range. The (090)-(000) and (080)-(000) bands of the A2A1-X2B1 electronic transition of NH2 and (100)-(000) and (011)-(000) bands of the A1A"-X1A' transition of HNO are used. Methane flames of different equivalence ratios are used. NH2 and HNO are observed in the flame as well as in the zone surrounding the flame, closer to the walls of the low-pressure chamber where the burner is located. An absorption originating from the species in this zone can affect substantially the results of line-of-sight experiments. A slow flow of nitrogen through the optical window holders was added in order to separate the spectra of HNO originating from the central flame zone. Calculations based on the commonly used GRI-Mech chemical mechanism predict two maxima in the HNO concentration profile in the NO doped flames. The first is located in the vicinity of the burner, and the second is closer to the luminescence flame zone. We were able to observe the first maximum, and its measured location agrees well with prediction. On the other hand, GRI-Mech strongly underpredicts the observed absolute concentration of HNO in this maximum. The measured absolute concentrations of NH2 are in reasonable agreement with the GRI-Mech predictions.  相似文献   

11.
The reaction of ethynyl radical (C(2)H) with allene (C(3)H(4)) at room temperature is investigated using an improved synchrotron multiplexed photoionization mass spectrometer (MPIMS) coupled to tunable vacuum ultraviolet (VUV) synchrotron radiation from the Advanced Light Source at the Lawrence Berkeley National Laboratory (LBNL). The orthogonal-accelerated time-of-flight mass spectrometer (OA-TOF) compared to the magnetic sector mass spectrometer used in a previous investigation of the title reaction (Phys. Chem. Chem. Phys., 2007, 9, 4291) enables more sensitive and selective detection of low-yield isomeric products. The C(5)H(4) isomer with the lowest ionization energy, pentatetraene, is now identified as a product of the reaction. Pentatetraene is predicted to be formed based on recent ab initio/RRKM calculations (Phys. Chem. Chem. Phys., 2010, 12, 2606) on the C(5)H(5) potential energy surface. However, the computed branching fraction for pentatetraene is predicted to be five times higher than that for methyldiacetylene, whereas experimentally the branching fraction of pentatetraene is observed to be small compared to that of methyldiacetylene. Although H-atom assisted isomerization of the products can affect isomer distribution measurements, isomerization has a negligible effect in this case. The kinetic behavior of the several C(5)H(4) isomers is identical, as obtained by time-dependent photoionization spectra. Even for high allene concentrations (and hence higher H-atom concentrations) no decay of the pentatetraene fraction is observed, indicating that H-assisted isomerization of pentatetraene to methyldiacetylene does not account for the difference between the experimental data and the theoretical branching ratios.  相似文献   

12.
Polyynic structures in fuel-rich low-pressure flames are observed using VUV photoionization molecular-beam mass spectrometry. High-level ab initio calculations of ionization energies for C2nH2 (n=1-5) and partially hydrogenated CnH4 (n=7-8) polyynes are compared with photoionization efficiency measurements in flames fuelled by allene, propyne, and cyclopentene. C2nH2 (n=1-5) intermediates are unambiguously identified, while HC[triple bond, length as m-dash]C-C[triple bond, length as m-dash]C-CH=C=CH2, HC[triple bond, length as m-dash]C-C[triple bond, length as m-dash]C-C[triple bond, length as m-dash]C-CH=CH2 (vinyltriacetylene) and HC[triple bond, length as m-dash]C-C[triple bond, length as m-dash]C-CH[double bond, length as m-dash]CH-C[triple bond, length as m-dash]CH are likely to contribute to the C7H4 and C8H4 signals. Mole fraction profiles as a function of distance from the burner are presented. C7H4 and C8H4 isomers are likely to be formed by reactions of C2H and C4H radicals but other plausible formation pathways are also discussed. Heats of formation and ionization energies of several combustion intermediates have been determined for the first time.  相似文献   

13.
The triplet state phenylnitrene (PhN) species generated from the low-pressure (4.0 kPa) premixed laminar pyridine/oxygen/argon °ame was detected and identiˉed using tunable synchrotron vacuum ultraviolet photoionization and molecular-beam mass spectrometry techniques. The ionization energies of PhN were determined experimentally by photoionization e±ciency spectra and theoretically by calculations. The results indicate that PhN has a 3A2 ground state and its ˉrst and second adiabatic ionization energies are 8.04 and9.15§0.05 eV, respectively. Furthermore, the formation and consumption pathways of PhN are proposed according to the species detected in the present work. PhN is the ˉrst nitrogen-containing diradical detected in combustion chemistry, and so it should be added to the kinetic model of pyridine °ames.  相似文献   

14.
In recent years, increasing attention has been paid to “soft” photoionization (PI), which will potentially become a standard, universal ionization method. Tunable synchrotron vacuum ultraviolet (SVUV) light, a quasi-continuous light with good energy resolution and high photon flux, has proved an ideal source for “soft” PI in various research fields (e.g., combustion chemistry and molecular imaging).This review focuses on combinations of SVUV light with commonly used techniques (e.g., molecular-beam sampling, laser desorption, ion desorption, and thermal vaporization). These couplings have successful applications in flame chemistry, organic analysis, chemical imaging and aerosol mass spectrometry.  相似文献   

15.
A comprehensive experimental study of the premixed ethylene/oxygen/argon flame at 2.667 kPa with a stoichiometric equivalence ratio (φ=1) was performed with the tunable synchrotron photoionization and molecular-beam sampling mass spectrometry techniques. The isomers of most observed species in the flame were unambiguously identified by measurements of the photoionization efficiency spectra, e.g. C3H4, C2H4O and C4H4. The mole fraction profiles of species up to C7H8 were measured by scanning the burner position at the selected photon energies near ionization thresholds, and the flame temperature profile was obtained by using Pt/Pt-13%Rh thermocouple. Compared with the previous studies, a lot of new flame species:C3H2, C3H3, C3H5, C2H6O, C4H2, C4H4, C4H6, C3H4O, C3H6O, C3H8O, C5H6, C4H8O and C7H8, were observed. A series of free radicals in the flame are detected to be CH3, C2H3, C2H5, HCO, C3H3 and C3H5.Based on the experimental work, a reduced reaction mechanism was developed including 40 species and 223 reactions. Modeling and measurements agree well for the major species and most intermediates. A detailed kinetic model is desired for this flame.  相似文献   

16.
A fuel-lean laminar premixed methylmethacrylate/oxygen/argon flame at 2.67 kPa with an equivalence ratio (phi) of 0.75 has been investigated with the tunable synchrotron vacuum ultraviolet (VUV) photoionization and molecular beam sampling mass spectrometry techniques. Isomers of most observed species in the flame have been identified by measurements of photoionization mass spectra and the near-threshold photoionization efficiency spectra. Mole fraction profiles for about 42 flame species are displayed. Free radicals such as CH3, C2H3, C2H5, C3H3, C3H5, C2H3O, C4H7, C3H5O, C3H7O, C4H3O, C4H9O, C4H5O2, C4H7O2, and C5H7O2, which should be of importance in understanding the formation mechanism of some toxic substances, were detected in the flame. Moreover, no isomers of any PAHs have been detected in the lean flame. Combined with the mole fraction profiles, the formation mechanisms of the free radicals, oxygenated compounds, and other molecular intermediates are proposed and will provide important information on modeling the combustion kinetics of methylmethacrylate (MMA).  相似文献   

17.
Earlier synchrotron photoionization mass spectrometry experiments suggested a prominent ring-opening channel in the OH-initiated oxidation of cyclohexene, based on comparison of product photoionization spectra with calculated spectra of possible isomers. The present work re-examines the OH + cyclohexene reaction, measuring the isomeric products of OH-initiated oxidation of partially and fully deuterated cyclohexene. In particular, the directly measured photoionization spectrum of 2-cyclohexen-1-ol differs substantially from the previously calculated Franck-Condon envelope, and the product spectrum can be fit with no contribution from ring-opening. Measurements of H(2)O(2) photolysis in the presence of C(6)D(10) establish that the addition-elimination product incorporates the hydrogen atom from the hydroxyl radical reactant and loses a hydrogen (a D atom in this case) from the ring. Investigation of OH + cyclohexene-4,4,5,5-d(4) confirms this result and allows mass discrimination of different abstraction pathways. Products of 2-hydroxycyclohexyl-d(10) reaction with O(2) are observed upon adding a large excess of O(2) to the OH + C(6)D(10) system.  相似文献   

18.
Previous studies suggest that soot formed in premixed flat flames can contain a substantial amount of aliphatic compounds. Presence of these compounds may affect the kinetics of soot mass growth and oxidation in a way that is currently not understood. Using an infrared spectrometer coupled to a microscope (micro-FTIR), we examined the composition of soot sampled from a set of ethylene-argon-oxygen flames recently characterized (A. D. Abid, et al. Combust. Flame, 2008, 154, 775-788), all with an equivalence ratio Φ=2.07 but varying in maximum flame temperatures. Soot was sampled at three distances above the burner surface using a probe sampling technique and deposited on silicon nitride thin film substrates using a cascade impactor. Spectra were taken and analyses performed for samples collected on the lowest five impactor stages with the cut-off sizes of D(50)=10, 18, 32, 56 and 100 nm. The micro-FTIR spectra revealed the presence of aliphatic C–H, aromatic C–H and various oxygenated functional groups, including carbonyl (C=O), C–O–C and C–OH groups. Spectral analyses were made to examine variations of these functional groups with flame temperature, sampling position and particle size. Results indicate that increases in flame temperature leads to higher contents of non-aromatic functionalities. Functional group concentrations were found to be ordered as follows: [C=O]<[C–O]<[aliphatic C–H]. Aliphatic C–H was found to exist in significant quantities, with very little oxygenated groups present. The ratio of these chemical functionalities to aromatic C–H remains constant for particle sizes spanning 10-100 nm. The results confirm a previous experimental finding: a significant amount of aliphatic compounds is present in nascent soot formed in the flames studied, especially towards larger distances above the burner surface.  相似文献   

19.
The isomeric composition of C(5)H(x) (x = 2-6, 8) flame species is analyzed for rich flames fueled by allene, propyne, cyclopentene, or benzene. Different isomers are identified by their known ionization energies and/or by comparison of the observed photoionization efficiencies with theoretical simulations based on calculated ionization energies and Franck-Condon factors. The experiments combine flame-sampling molecular-beam mass spectrometry with photoionization by tunable vacuum-UV synchrotron radiation. The theoretical simulations employ the rovibrational properties obtained with B3LYP/6-311++G(d,p) density functional theory and electronic energies obtained from QCISD(T) electronic structure calculations extrapolated to the complete basis set limit. For C(5)H(3), the comparison reveals the presence of both the H(2)CCCCCH (i-C(5)H(3)) and the HCCCHCCH (n-C(5)H(3)) isomer. The simulations also suggest a modest amount of cyclo-CCHCHCCH-, which is consistent with a minor signal for C(5)H(2) that is apparently due to cyclo-CCHCCCH-. For C(5)H(4), contributions from the CH(2)CCCCH(2) (1,2,3,4-pentatetraene), CH(2)CCHCCH, and CH(3)CCCCH (1,3-pentadiyne) isomers are evident, as is some contribution from CHCCH(2)CCH (1,4-pentadiyne) in the cyclopentene and benzene flames. Signal at m/z = 65 originates mainly from the cyclopentadienyl radical. For C(5)H(6), contributions from cyclopentadiene, CH(3)CCCHCH(2), CH(3)CHCHCCH, and CH(2)CHCH(2)CCH are observed. No signal is observed for C(5)H(7) species. Cyclopentene, CH(2)CHCHCHCH(3) (1,3-pentadiene), CH(3)CCCH(2)CH(3) (2-pentyne), and CH(2)CHCH(2)CHCH(2) (1,4-pentadiene) contribute to the signal at m/z = 68. Newly derived ionization energies for i- and n-C(5)H(3) (8.20 +/- 0.05 and 8.31 +/- 0.05 eV, respectively), CH(2)CCHCCH (9.22 +/- 0.05 eV), and CH(2)CHCH(2)CCH (9.95 +/- 0.05 eV) are within the error bars of the QCISD(T) calculations. The combustion chemistry of the observed C(5)H(x) intermediates and the impact on flame chemistry models are discussed.  相似文献   

20.
A fuel‐rich premixed laminar methyl methacrylate (MMA)/O2/Ar flame at low pressure (30 Torr) with the equivalence ratio (?) of 1.60 is studied in this work. Synchrotron vacuum ultraviolet photoionization combined with molecular beam mass spectrometry is employed to identify the combustion intermediates including isomeric intermediates. The observed combustion intermediates can be classified as four types: radicals, non‐cyclic hydrocarbons, cyclic hydrocarbons and oxygenates. Benzene is the unique aromatic hydrocarbon detected in this work, and several oxygenates with two oxygen atoms are identified. Mole fraction profiles of most intermediates are evaluated, which can help understand the MMA combustion mechanism under fuel‐rich conditions. The similarities among rich flames of MMA and other oxygenated fuels, as well as the characteristics of rich MMA flame, are also discussed. The results show that combustion of MMA not only reduces soot emissions, but also has low concentrations of some potential toxic by‐products. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号