共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We report the preparation and electrochemical properties of Na3V(PO3)3N made by ammonolysis. Na3V(PO3)3N is reversibly oxidized to Na2V(PO3)3N at high voltage (4.0 V vs. Na+/Na0 and 4.1 V vs. Li+/Li0) with an unusually small difference in the insertion/extraction voltage between both alkali metal reference electrodes. In both cases, the voltage hysteresis is extremely small (~ 0.035 V vs. sodium and ~ 0.065 V vs. lithium), which suggests facile migration of alkali cations within the structure. Further oxidation to NaV(PO3)3N is predicted to occur beyond the voltage stability window of the electrolytes. 相似文献
3.
Lyness C Delobel B Armstrong AR Bruce PG 《Chemical communications (Cambridge, England)》2007,(46):4890-4892
The electrochemical behaviour of 3 polymorphs of the lithium intercalation compound Li2CoSiO4, betaI, betaII and gamma0, as positive electrodes in rechargeable lithium batteries is investigated for the first time. 相似文献
4.
Yanying Wang Yan Tang Benhe Zhong Heng Liu Yanjun Zhong Xiaodong Guo 《Journal of Solid State Electrochemistry》2014,18(1):215-221
The flake-like Li3V2(PO4)3/C has been successfully synthesized by rheological phase method using polyvinyl alcohol (PVA) as template; the Li3V2(PO4)3/C without PVA assistance has been prepared for comparison. X-ray diffraction analysis shows that the two samples are well crystallized, and no impurity phases are detected. The scanning electron microscopy results reveal that there is a significant difference in morphologies between PVA-assisted sample and sample without PVA; the former shows a flake-like morphology, while the latter presents regular granular shape with some agglomeration. Transmission electron microscopy images reveal that Li3V2(PO4)3 particles are coated with a uniform surface carbon layer. The lattice fringes with a spacing of 0.428 nm can be clearly seen from the high-resolution transmission electron microscopy image. The PVA-assisted sample shows a discharge capacity of 120, 110, and 96 mAh g?1 at 1 C, 20 C, and 50 C, respectively; however, the sample without PVA exhibits a lower discharge capacity. Based on the analysis of electrochemical impedance spectroscopy, the lithium ion diffusion coefficients of Li3V2(PO4)3/C and PVA-assisted Li3V2(PO4)3/C are 4.19?×?10?9 and 4.99?×?10?8 cm2 s?1, respectively. In summary, it is demonstrated that using PVA as a template can obtain flake-like morphology and significantly improve the comprehensive electrochemical performances of Li3V2(PO4)3/C cathode material. 相似文献
5.
Facile synthesis of porous MnO/C nanotubes as a high capacity anode material for lithium ion batteries 总被引:1,自引:0,他引:1
GL Xu YF Xu H Sun F Fu XM Zheng L Huang JT Li SH Yang SG Sun 《Chemical communications (Cambridge, England)》2012,48(68):8502-8504
Porous MnO/C nanotubes are synthesized by a facile hydrothermal method followed by thermal annealing, and possess excellent cyclability and high rate capability as an anode for lithium ion batteries. 相似文献
6.
Khomane RB 《Journal of colloid and interface science》2011,356(1):369-372
Mesoporous rutile TiO(2) nanoneedles have been successfully synthesized using a reverse microemulsion-mediated sol-gel method at room temperature. The materials were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and the Bruauner-Emmet-Teller (BET) adsorption method, and their electrochemical properties were investigated by galvanostatic charge and discharge tests. XRD observations revealed the formation of a pure rutile TiO(2) phase. Furthermore, TEM observation revealed the presence of a highly porous needle-like morphology. The electrochemical measurements show that the nanoneedles deliver an initial capacity of 305 mA h g(-1) as anode material for Li-ion batteries and sustain a capacity value of 128 mA h g(-1) beyond 15 cycles. The reported synthesis is simple, mild, energy efficient, and without postcalcination. 相似文献
7.
Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3-LiCo(1/3)Ni(1/3)Mn(1/3)O2 总被引:1,自引:0,他引:1
Yabuuchi N Yoshii K Myung ST Nakai I Komaba S 《Journal of the American Chemical Society》2011,133(12):4404-4419
Lithium-excess manganese layered oxides, which are commonly described by the chemical formula zLi(2)MnO(3)-(1-z)LiMeO(2) (Me = Co, Ni, Mn, etc.), are of great importance as positive electrode materials for rechargeable lithium batteries. In this Article, Li(x)Co(0.13)Ni(0.13)Mn(0.54)O(2-δ) samples are prepared from Li(1.2)Ni(0.13)Co(0.13)Mn(0.54)O(2) (or 0.5Li(2)MnO(3)-0.5LiCo(1/3)Ni(1/3)Mn(1/3)O(2)) by an electrochemical oxidation/reduction process in an electrochemical cell to study a reaction mechanism in detail before and after charging across a voltage plateau at 4.5 V vs Li/Li(+). Changes of the bulk and surface structures are examined by synchrotron X-ray diffraction (SXRD), X-ray absorption spectroscopy (XAS), X-ray photoelectron spectroscopy (XPS), and time-of-flight secondary ion mass spectroscopy (SIMS). SXRD data show that simultaneous oxygen and lithium removal at the voltage plateau upon initial charge causes the structural rearrangement, including a cation migration process from metal to lithium layers, which is also supported by XAS. This is consistent with the mechanism proposed in the literature related to the Li-excess manganese layered oxides. Oxygen removal associated with the initial charge on the high voltage plateau causes oxygen molecule generation in the electrochemical cells. The oxygen molecules in the cell are electrochemically reduced in the subsequent discharge below 3.0 V, leading to the extra capacity. Surface analysis confirms the formation of the oxygen containing species, such as lithium carbonate, which accumulates on the electrode surface. The oxygen containing species are electrochemically decomposed upon second charge above 4.0 V. The results suggest that, in addition to the conventional transition metal redox reactions, at least some of the reversible capacity for the Li-excess manganese layered oxides originates from the electrochemical redox reaction of the oxygen molecules at the electrode surface. 相似文献
8.
Pérez-Flores JC Baehtz C Hoelzel M Kuhn A García-Alvarado F 《Physical chemistry chemical physics : PCCP》2012,14(8):2892-2899
A detailed structural and electrochemical study of the ion exchanged Li(2)Ti(6)O(13) titanate as a new anode for Li-ion batteries is presented. Subtle structural differences between the parent Na(2)Ti(6)O(13), where Na is in an eightfold coordinated site, and the Li-derivative, where Li is fourfold coordinated, determine important differences in the electrochemical behaviour. While the Li insertion in Na(2)Ti(6)O(13) proceeds reversibly the reaction of lithium with Li(2)Ti(6)O(13) is accompanied by an irreversible phase transformation after the first discharge. Interestingly, this new phase undergoes reversible Li insertion reaction developing a capacity of 170 mAh g(-1) at an average voltage of 1.7 V vs. Li(+)/Li. Compared with other titanates this result is promising to develop a new anode material for lithium ion rechargeable batteries. Neutron powder diffraction revealed that Na in Na(2)Ti(6)O(13) and Li in Li(2)Ti(6)O(13) obtained by Na/Li ion exchange at 325 °C occupy different tunnel sites within the basically same (Ti(6)O(13))(2-) framework. On the other hand, electrochemical performance of Li(2)Ti(6)O(13) itself and the phase released after the first full discharge is strongly affected by the synthesis temperature. For example, heating Li(2)Ti(6)O(13) at 350 °C produces a drastic decrease of the reversible capacity of the phase obtained after full discharge, from 170 mAh g(-1) to ca. 90 mAh g(-1). This latter value has been reported for Li(2)Ti(6)O(13) prepared by ion exchange at higher temperature. 相似文献
9.
Faraji Masoud Khalilzadeh Soltanahmadi Roya Seyfi Soudabeh Mostafavi Bavani Borhan Mohammadzadeh Aydisheh Hossein 《Journal of Solid State Electrochemistry》2020,24(10):2315-2324
Journal of Solid State Electrochemistry - In this study, novel and low-cost tungsten oxide/carbon nanotubes-graphite-polyvinyl chloride (WO3/CNTs-graphite-PVC) film with porous 3D network structure... 相似文献
10.
Singh Laxman Kumar Atendra Lee Hansol Lee Jiwon Ji Minsoo Lee Youngil 《Journal of Solid State Electrochemistry》2018,22(8):2561-2568
Journal of Solid State Electrochemistry - This article reports for the first time ultrafast automatic flame synthesis of high-quality LiCoO2 in open-air conditions as a cathode material for Li-ion... 相似文献
11.
《中国化学快报》2022,33(11):4776-4780
Zn2Ti3O8, as a new type of anode material for lithium-ion batteries, is attracting enormous attention because of its low cost and excellent safety. Though decent capacities have been reported, the electrochemical reaction mechanism of Zn2Ti3O8 has rarely been studied. In this work, a porous Zn2Ti3O8 anode with considerably high capacity (421 mAh/g at 100 mA/g and 209 mAh/g at 5000 mA/g after 1500 cycles) was reported, which is even higher than ever reported titanium-based anodes materials including Li4Ti5O12, TiO2 and Li2ZnTi3O8. Here, for the first time, the accurate theoretical capacity of Zn2Ti3O8 was confirmed to be 266.4 mAh/g. It was also found that both intercalation reaction and pseudocapacitance contribute to the actual capacity of Zn2Ti3O8, making it possibly higher than the theoretical value. Most importantly, the porous structure of Zn2Ti3O8 not only promotes the intercalation reaction, but also induces high pseudocapacitance capacity (225.4 mAh/g), which boosts the reversible capacity. Therefore, it is the outstanding pseudocapacitance capacity of porous Zn2Ti3O8 that accounts for high actual capacity exceeding the theoretical one. This work elucidates the superiorities of porous structure and provides an example in designing high-performance electrodes for lithium-ion batteries. 相似文献
12.
Li Qiao Xia Zhengbin Wang Shumin Zhang Yajun Zhang Yanhong 《Journal of Solid State Electrochemistry》2017,21(8):2177-2184
Journal of Solid State Electrochemistry - A hybrid material of electrochemical reduced TiO2 nanotubes/polypyrrole (r-TiO2 NTs/PPy) was successfully prepared through electrochemical reduction and... 相似文献
13.
以乙酸盐为原料,柠檬酸为络合剂,通过溶胶-凝胶的方法制备富锂阴极材料Li2MnO3,选用草酸亚锡(SnC2O4)为锡源,用Sn 4+代替Mn 4+,获得不同掺杂量的材料. 适当含量的Sn 4+掺杂可以提高材料的放电比容量,在低电流下获得256.3 mAh·g -1的高放电比容量,但由于Sn 4+离子半径过大,不能起到稳定结构的作用,材料的倍率性能较差. 在此基础上,选用氯化亚锡(SnCl2)进行掺杂改性,在材料中同时引入Sn 4+和Cl -掺杂,获得了层状结构更完整的粉末样品. 通过共掺杂改性的阴极材料可以在20 mA·g -1的电流密度,经过80圈的循环仍然保持153 mAh·g -1的放电比容量,且此时还未出现衰减现象,库仑效率保持在96%以上;在400 mA·g -1的电流密度下提供的比容量可高达116 mAh·g -1,是未掺杂样品的2倍左右. 相似文献
14.
Bréger J Dupré N Chupas PJ Lee PL Proffen T Parise JB Grey CP 《Journal of the American Chemical Society》2005,127(20):7529-7537
The local environments and short-range ordering of LiNi(0.5)Mn(0.5)O(2), a potential Li-ion battery positive electrode material, were investigated by using a combination of X-ray and neutron diffraction and isotopic substitution (NDIS) techniques, (6)Li Magic Angle Spinning (MAS) NMR spectroscopy, and for the first time, X-ray and neutron Pair Distribution Function (PDF) analysis, associated with Reverse Monte Carlo (RMC) calculations. Three samples were studied: (6)Li(NiMn)(0.5)O(2), (7)Li(NiMn)(0.5)O(2), and (7)Li(NiMn)(0.5)O(2) enriched with (62)Ni (denoted as (7)Li(ZERO)Ni(0.5)Mn(0.5)O(2)), so that the resulting scattering length of Ni atoms is null. LiNi(0.5)Mn(0.5)O(2) adopts the LiCoO(2) structure (space group Rm) and comprises separate lithium layers, transition metal layers (Ni, Mn), and oxygen layers. NMR experiments and Rietveld refinements show that there is approximately 10% of Ni/Li site exchange between the Li and transition metal layers. PDF analysis of the neutron data revealed considerable local distortions in the layers that were not captured in the Rietveld refinements performed using the Bragg diffraction data and the LiCoO(2) structure, resulting in different M-O bond lengths of 1.93 and 2.07 Angstroms for Mn-O and Ni/Li-O, respectively. Large clusters of 2400-3456 atoms were built to investigate cation ordering. The RMC method was then used to improve the fit between the calculated model and experimental PDF data. Both NMR and RMC results were consistent with a nonrandom distribution of Ni, Mn, and Li cations in the transition metal layers; both the Ni and Li atoms are, on average, close to more Mn ions than predicted based on a random distribution of these ions in the transition metal layers. Constraints from both experimental methods showed the presence of short-range order in the transition metal layers comprising LiMn(6) and LiMn(5)Ni clusters combined with Ni and Mn contacts resembling those found in the so-called "flower structure" or structures derived from ordered honeycomb arrays. 相似文献
15.
Hall JW Membreno N Wu J Celio H Jones RA Stevenson KJ 《Journal of the American Chemical Society》2012,134(12):5532-5535
The reaction of Fe(N(SiMe(3))(2))(3) with PH(3) in THF at 100 °C gives amorphous FeP(2) in high yield. As an anode material in a Li ion battery, this material shows remarkable performance toward electrochemical lithiation/delithation, with gravimetric discharge and charge capacities of 1258 and 766 mA h g(-1), respectively, translating to 61% reversibility on the first cycle and a discharge capacity of 906 mA h g(-1) after 10 cycles. This translates to 66% retention of the theoretical full conversion capacity of FeP(2) (1365 mA h g(-1)). 相似文献
16.
《中国科学:化学(英文版)》2017,(9)
To satisfy the upsurging demand for energy storage in modern society,anode materials which can deliver high capacity have been intensively researched for the next generation lithium ion batteries.Typically,the binary MnCo_2O_4 with a characteristic coupled metal cations showed promising potential due to its high theoretical capacity and low cost.Here,by means of a well-designed synthesis control,we demonstrated a scalable process to achieve a hierarchical structure of MnCo_2O_4,which existed as uniform microspheres with embedded mesopores,showing favorable structural characters for high performance during a fast charge/discharge process.Our synthesis highlighted the importance of sodium salicylate as an essential additive to control the precipitation of the two involved metal cations.It was proved that a dual role was played sodium salicylate which cannot only facilitate the formation of microspheric shape,but also act as an effective precursor for the creation of inner mesopores.We confirmed that the hierarchically-structured MnCo_2O_4 showed outstanding performance when it was tested as an anode material in lithium ion batteries as revealed by its extraordinary cycling stability and high rate capability. 相似文献
17.
Wang Z Zhang B Kurmoo M Green MA Fujiwara H Otsuka T Kobayashi H 《Inorganic chemistry》2005,44(5):1230-1237
[Co3(HCOO)6](CH3OH)(H2O) (1), the isostructural analogue of the porous magnet of coordination framework [Mn3(HCOO)6](CH3OH)(H2O), and its desolvated form [Co3(HCOO)6] (2) were prepared and characterized by X-ray and neutron diffraction methods, IR, thermal analyses, and BET, and their magnetic properties were measured. The parent compound, 1, crystallizes in the monoclinic system, space group P21/c, a = 11.254(2) A, b = 9.832(1) A, c = 18.108(3) A, beta = 127.222(2) degrees , V = 1595.5(4) A3, Z = 4, R1 = 0.0329 at 180 K. It possesses a unit cell volume that is 9% smaller than [Mn3(HCOO)6](CH3OH)(H2O) due to the smaller radius of Co2+ ion. Compared with the parent compound 1, the desolvated compound 2 has slightly larger lattice with cell parameters of a = 11.2858(4) A, b = 9.8690(4) A, c = 18.1797(6) A, beta = 127.193(2) degrees , V = 1613.0(1) A3, R1 = 0.0356 at 180 K. The cell parameters of 2, obtained from neutron powder data at 2 K, are a = 11.309(2) A, b = 9.869(1) A, c = 18.201(3) A, beta = 127.244(8) degrees , V = 1617.3(5) A3. The pore volume reduces from 33% to 30% by replacing Mn by Co. The material exhibits a diamond framework based on Co-centered CoCo4 tetrahedral nodes, in which all metal ions have octahedral coordination geometry and all HCOO groups link the metal ions in syn-syn/anti modes. It displays thermal stability up to 270 degrees C. The compound easily loses guest molecules without loss of crystallinity, and it partly reabsorbs water from the atmosphere. Significant N2 sorption was observed for the desolvated framework suggesting that the material possesses permanent porosity. The magnetic properties show a tendency to a 3D long-range magnetic ordering, probably antiferromagnetic with a spin canting arrangement below 2 K. 相似文献
18.
xLi2MnO3-(1-x)LiNi0.9Zn0.1O2 (x = 0.1, 0.2 and 0.3) cathodes were prepared by two steps solid-state reaction method. Layered crystalline phases (space groups of C2/m for Li2MnO3 and R3m for LiNi0.9Zn0.1O2) were detected in all cathodes. FTIR study also revealed the formation of the layered-type structures of all cathodes. The structural parameters were greatly influenced by the contents of Li2MnO3 in xLi2MnO3-(1-x)LiNi0.9Zn0.1O2. The electrical conductivities were found in the range of 1.2 × 10?6 to 2.7 × 10?6 S/cm. The dielectric spectra revealed the interfacial polarization Maxwell–Wagner type dielectric dispersion existing in all samples. The cathodes delivered the discharge capacities of 149 (x = 0.1), 151 (x = 0.2) and 157 mAh/g (x = 0.3) with capacity retention between 94.6 and 96.8% when they were cycled from 3.0 to 4.5 V under 0.1C rate. The x = 0.3 cathode exhibited the highest cyclic performance (96.8%) after 10 cycles due to its lower cations disorder. 相似文献
19.
Sun YK Myung ST Kim MH Prakash J Amine K 《Journal of the American Chemical Society》2005,127(38):13411-13418
The high capacity of Ni-rich Li[Ni(1-x)M(x)]O(2) (M = Co, Mn) is very attractive, if the structural instability and thermal properties are improved. Li[Ni(0.5)Mn(0.5)]O(2) has good thermal and structural stabilities, but it has a low capacity and rate capability relative to the Ni-rich Li[Ni(1-x)M(x)]O(2). We synthesized a spherical core-shell structure with a high capacity (from the Li[Ni(0.8)Co(0.1)Mn(0.1)]O(2) core) and a good thermal stability (from the Li[Ni(0.5)Mn(0.5)]O(2) shell). This report is about the microscale spherical core-shell structure, that is, Li[Ni(0.8)Co(0.1)Mn(0.1)]O(2) as the core and a Li[Ni(0.5)Mn(0.5)]O(2) as the shell. A high capacity was delivered from the Li[Ni(0.8)Co(0.1)Mn(0.1)]O(2) core, and a high thermal stability was achieved by the Li[Ni(0.5)Mn(0.5)]O(2) shell. The core-shell structured Li[(Ni(0.8)Co(0.1)Mn(0.1))(0.8)(Ni(0.5)Mn(0.5))(0.2)]O(2)/carbon cell had a superior cyclability and thermal stability relative to the Li[Ni(0.8)Co(0.1)Mn(0.1)]O(2) at the 1 C rate for 500 cycles. The core-shell structured Li[(Ni(0.8)Co(0.1)Mn(0.1))(0.8)(Ni(0.5)Mn(0.5))(0.2)]O(2) as a new positive electrode material is a significant breakthrough in the development of high-capacity lithium batteries. 相似文献
20.
We first report a facile hydrothermal route for preparing TiO(2)(B) nanowires with ultrahigh surface area, up to 210 m(2) g(-1). Due to the 1D structure, high BET surface area and shorter b-and c-axis channel across the nanowires, the obtained TiO(2)(B) nanowire was shown to be a good anode material for lithium-ion batteries, especially on the fast charging and discharging performance. 相似文献