首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The acid?Cbase behavior of $\mathrm{Fe}(\mathrm{CN})_{6}^{4-}$ was investigated by measuring the formal potentials of the $\mathrm{Fe}(\mathrm{CN})_{6}^{3-}$ / $\mathrm{Fe}(\mathrm{CN})_{6}^{4-}$ couple over a wide range of acidic and neutral solution compositions. The experimental data were fitted to a model taking into account the protonated forms of $\mathrm{Fe}(\mathrm{CN})_{6}^{4-}$ and using values of the activities of species in solution, calculated with a simple solution model and a series of binary data available in the literature. The fitting needed to take account of the protonated species $\mathrm{HFe}(\mathrm{CN})_{6}^{3-}$ and $\mathrm{H}_{2}\mathrm{Fe}(\mathrm{CN})_{6}^{2-}$ , already described in the literature, but also the species $\mathrm{H}_{3}\mathrm{Fe}(\mathrm{CN})_{6}^{-}$ (associated with the acid?Cbase equilibrium $\mathrm{H}_{3}\mathrm{Fe}(\mathrm{CN})_{6}^{-}\rightleftharpoons \mathrm{H}_{2}\mathrm{Fe}(\mathrm{CN})_{6}^{2-} + \mathrm{H}^{+}$ ). The acidic dissociation constants of $\mathrm{HFe}(\mathrm{CN})_{6}^{3-}$ , $\mathrm{H}_{2}\mathrm{Fe}(\mathrm{CN})_{6}^{2-}$ and $\mathrm{H}_{3}\mathrm{Fe}(\mathrm{CN})_{6}^{-}$ were found to be $\mathrm{p}K^{\mathrm{II}}_{1}= 3.9\pm0.1$ , $\mathrm{p}K^{\mathrm{II}}_{2} = 2.0\pm0.1$ , and $\mathrm{p}K^{\mathrm{II}}_{3} = 0.0\pm0.1$ , respectively. These constants were determined by taking into account that the activities of the species are independent of the ionic strength.  相似文献   

2.
Densities, ??, and viscosities, ??, of binary mixtures of 2-methyl-2-propanol with acetone (AC), ethyl methyl ketone (EMK) and acetophenone (AP), including those of the pure liquids, were measured over the entire composition range at 298.15, 303.15 and 308.15?K. From these experimental data, the excess molar volume $V_{\mathrm{m}}^{\mathrm{E}}$ , deviation in viscosity ????, partial and apparent molar volumes ( $\overline{V}_{\mathrm{m},1}^{\,\circ }$ , $\overline{V}_{\mathrm{m},2}^{\,\circ }$ , $\overline{V}_{\phi ,1}^{\,\circ}$ and $\overline{V}_{\phi,2}^{\,\circ} $ ), and their excess values ( $\overline{V}_{\mathrm{m},1}^{\,\circ \mathrm{E}}$ , $\overline{V}_{\mathrm{m,2}}^{\,\circ \mathrm{ E}}$ , $\overline {V}_{\phi \mathrm{,1}}^{\,\circ \mathrm{ E}}$ and $\overline{V}_{\phi \mathrm{,2}}^{\,\circ \mathrm{ E}}$ ) of the components at infinite dilution were calculated. The interaction between the component molecules follows the order of AP > AC > EMK.  相似文献   

3.
The reaction quotient Q can be expressed in partial pressures as $\hbox {Q}_\mathrm{P}$ or in mole fractions as $\hbox {Q}_{\mathrm{x}}$ . $\hbox {Q}_\mathrm{P}$ is ostensibly more useful than $\hbox {Q}_{\mathrm{x}}$ because the related $\hbox {K}_{\mathrm{x}}$ is a constant for a chemical equilibrium in which T and P are kept constant while $\hbox {K}_{\mathrm{P}}$ is an equilibrium constant under more general conditions in which only T is constant. However, as demonstrated in this work, $\hbox {Q}_{\mathrm{x}}$ is in fact more important both theoretically and technically. The relationships between $\hbox {Q}_{\mathrm{x}}$ , $\hbox {Q}_\mathrm{P}$ , and $\hbox {Q}_{\mathrm{C}}$ are discussed. Four examples of applications are given in detail.  相似文献   

4.
The chemical composition of the solution has a critical impact on the electrospray desorption efficiency of oligonucleotides. Several physiochemical properties of various organic modifiers were investigated with respect to their role in the desorption process of oligonucleotides. The Henry’s Law Constant, which reflects the volatility of alkylamines, was found to have a prominent effect on both the electrospray charge state distribution and desorption efficiency of oligonucleotides. Alkylamines with higher $ \mathrm{k}_{\mathrm{H,cc}}\left( {\mathrm{aq}/\mathrm{gas}} \right) $ values such as hexylamine, piperidine, and imidazole reduced the charge state distribution by forming complexes with the oligonucleotide and dissociating from it in the gas phase, while alkylamines with extremely low $ \mathrm{k}_{\mathrm{H,cc}}\left( {\mathrm{aq}/\mathrm{gas}} \right) $ values reduced the electrospray charge state distribution by facilitating ion emission at an earlier stage of the electrospray desorption process. Ion-pairing agents with moderate $ \mathrm{k}_{\mathrm{H,cc}}\left( {\mathrm{aq}/\mathrm{gas}} \right) $ values do not alter the electrospray charge state distribution of oligonucleotides and their ability to enhance oligonucleotide ionization followed the order of decreasing $ \mathrm{k}_{\mathrm{H,cc}}\left( {\mathrm{aq}/\mathrm{gas}} \right) $ values. The Henry’s Law Constant also correlated to the impact of the acidic modifiers on oligonucleotide ionization efficiency. Ionization enhancement effects were observed with hexafluoroisopropanol, and this effect was attributed to its low $ \mathrm{k}_{\mathrm{H,cc}}\left( {\mathrm{aq}/\mathrm{gas}} \right) $ and moderate acidity. The comprehensive effects of both alkylamine and hexafluoroisoproapnol on the electrospray ionization desorption of oligonucleotides were also evaluated, and acid-base equilibrium was found to play a critical role in determining these effects.   相似文献   

5.
Over the last decades, copious work has been devoted to the development of small molecule replicas of the peroxidase enzymes that activate hydrogen peroxide in metabolic and detoxifying processes. TAML activators that are the subject of this study are the first full functional, small molecule peroxidase mimics. As an important feature of the catalytic cycle, TAML reactive intermediates (active catalysts, Ac) undergo suicidal inactivation, compromising the functional catalysis. Herein the relationship between suicidal inactivation and productive catalysis is rigorously addressed mathematically and chemically. We focus on a generalized catalytic cycle in which the TAML inactivation step is delineated by its rate constant $k_{\mathrm{i}}$ where the revealing data is collected in the regime of incomplete conversion of substrate (S) artificially imposed by the use of very low catalyst concentrations. $$\begin{aligned} \left\{ \begin{array}{l@{\quad }l} \hbox {Resting catalyst (Rc)} + \hbox {Oxidant} \rightarrow \hbox {Ac} &{} (k_{\mathrm{I}})\\ \hbox {Ac + Substrate (S)}\rightarrow \hbox {Rc}+\hbox {Product} &{} (k_{\mathrm{II}})\\ \hbox {Ac} \rightarrow \hbox {Inactive catalyst} &{} (k_{\mathrm{i}}) \end{array} \right. \end{aligned}$$ The system exhibits a nonlinear conservation law and is modeled via a singular perturbation approach, which is used to obtain closed form relationships between system parameters. A new method is derived that allows to compute all the rate constants in the catalytic cycle, $k_{\mathrm{I}},k_{\mathrm{II}}$ , and $k_{\mathrm{i}}$ , with as little as two linear least squares fits, for the minimal data set collected under any conditions providing that the oxidation of S is incomplete. This method facilitates determination of $k_{\mathrm{i}}$ , a critical rate constant that describes the operational lifetime of the catalyst, and greatly reduces the experimental work required to obtain the important rate constants.The approach was applied to the behavior of a new TAML activator, the synthesis and characterization of which are also described.  相似文献   

6.
7.
The effect of physical activation with CO2 of carbon xerogels, synthesized by pyrolysis of a resorcinol-formaldehyde aqueous gel, on the adsorption capacities of Methylene Blue (MB) was studied. The activation with CO2 lead?to carbon materials with micropore volumes ranging from $0.28\ \mathrm{to}\ 0.98~\mathrm{cm}^{3}\,\mathrm{g}_{\mathrm{C}}^{-1}$ . MB-adsorption isotherm studies showed that the increase of micropore volume and corresponding surface area led to: (i) a significant improvement in the capacity of MB-adsorption at monolayer coverage, from $212\ \mathrm{to}\ 714~\mathrm{mg}\,\mathrm{g}_{\mathrm{C}}^{-1}$ , and (ii) an increase of the binding energy related to Langmuir isotherm constant up to 45 times greater than those of commercial microporous activated carbons used as reference (NORIT R2030, CALGON BPL and CALGON NC35). It is proposed that the increase of the binding energy results from chemical cleaning of the O-groups onto carbon surface as a consequence of CO2-activation, increasing the ππ interaction between MB and graphene layers of the carbon xerogels. Finally, a series of batch kinetics were performed to investigate the effect of CO2-activation conditions on the mechanism of MB-adsorption. Experimental data were fitted using pseudo-first-order, pseudo-second-order and intraparticle diffusion kinetic models. From pseudo-second-order kinetic model, one observes an increase in the initial rate of MB-adsorption from 0.019 to 0.0565 min?1, by increasing the specific surface area from $630\ \mathrm{to}\ 2180~\mathrm{m}^{2}\,\mathrm{g}_{\mathrm{C}}^{-1}$ via CO2-activation. Depending on the activation degree of the carbons, two different mechanisms control the MB-adsorption rate: (i) at low activation degree, the intraparticle diffusion is the rate-limiting phenomenon, whereas (ii) at high activation degree, the reactions occurring at the solid/liquid interface are the rate-limiting steps.  相似文献   

8.
An electrogenerated chemiluminescence (ECL) sensor for reduced glutathione was developed based on $ \mathrm{Ru}\left( {\mathrm{bpy}} \right)_3^{2+ } $ -doped silica nanoparticles-modified gold electrode (Ru-DSNPs/Au). These uniform Ru-DSNPs (about 58?+?4 nm) were prepared by a water-in-oil microemulsion method and characterized by transmission electron microscope and scanning electron microscope. With such a unique immobilization method, a considerable $ \mathrm{Ru}\left( {\mathrm{bpy}} \right)_3^{2+ } $ was immobilized three dimensionally on the electrode, which could greatly enhance the ECL response and thus result in an increased sensitivity. The ECL analytical performances of this sensor for reduced glutathione based on the quenched ECL emission of $ \mathrm{Ru}\left( {\mathrm{bpy}} \right)_3^{2+ } $ have been investigated in detail. Under the optimum condition, the ECL intensity was linear with the reduced glutathione concentration in the range of 1.0?×?10?9 to 1.0?×?10?4?mol?L?1 (R?=?0.9971). This method has been successfully applied for the determination of reduced glutathione in serum samples with satisfactory results. The as-prepared ECL sensor for the determination of reduced glutathione displayed good sensitivity and stability.  相似文献   

9.
The composition of the adsorbed film and the excess Gibbs energy of adsorption $ {\widehat{g}}^{\mathrm{H},\mathrm{E}} $ were evaluated from thermodynamic analysis of surface tensions for the 1-decyl-3-methylimidazoulium bromide (C10mimBr)–tetraethylene glycol monooctyl ether (C8E4) and 1-decyl-3-methyl-imidazolium tetrafluorobrorate (C10mimBF4)–C8E4 systems, where the counter anion of imidazolium salts is different from each other. The higher miscibility of two components compared to an ideal mixing and thus negative $ {\widehat{g}}^{\mathrm{H},\mathrm{E}} $ were observed in the former, which comes from the ion–dipole interaction between imidazolium cation and the oxyethylene group of C8E4. On the other hand, the lower miscibility and thus positive $ {\widehat{g}}^{\mathrm{H},\mathrm{E}} $ were observed for the latter. Such differences were attributed to that BF4 ? forms two hydrogen bonds and has stronger affinity with the cationic head group of C10mim+ than Br?. This results in that the ion–dipole interaction between C8E4 and C10mim+ cation is diminished in the C10mimBF4–C8E4 system.  相似文献   

10.
The ultrasonic velocities (u) and densities (??) for three binary mixture systems of 2-chloroaniline (CA) with ethyl acrylate (EA), butyl acrylate (BA), and 2-ethylhexyl acrylate (EHA) were measured over the entire mole fraction range at the temperature 308.15?K, including those of pure liquids. From these data, the deviations in ultrasonic velocity (??u), the excess molar volumes ( $V_{\mathrm{m}}^{\mathrm{E}}$ ), deviations in excess molar volume ( $\delta V_{\mathrm{m}}^{\mathrm{E}}$ ), deviations in isentropic compressibility (??k S), excess intermolecular free lengths ( $L_{\mathrm{f}}^{\mathrm{E}}$ ), and excess acoustic impedances (Z E) have been calculated. The variations of these properties with solution composition are discussed in terms of molecular interactions among unlike molecules of the mixtures. The excess and deviation functions have been fitted to Redlich-Kister type polynomials and the corresponding standard deviations ??(Y E) have been calculated. The deviations and excess values were plotted against the mole fraction of CA over the whole composition range. The $V_{\mathrm{m}}^{\mathrm{E}}$ and ??k S values are negative in the EA + CA and BA + CA systems but are positive in the EHA + CA system, which indicates the presence of specific interactions between unlike molecules. Further, theoretical values of the sound velocity in these mixtures have been evaluated using various theories and have been compared with experimental sound velocities to verify the applicability of such theories to the investigated systems. Two types of polynomial equations, f(x) and g(x), have been fitted to experimental values of ultrasonic velocities. The sound velocities obtained by these polynomials have extremely small deviations from the experimental values.  相似文献   

11.
The solubilities in water (W) and in 3 mol?L?1 aqueous acetonitrile at 298.15 K of thiophene-2-, furan-2- and pyrrole-2-carboxaldehyde phenylhydrazone along with their nitro and 2,4-dinitro derivatives, referred to as PCT, PCF, PCP, NPCT, NPCF, NPCP, DPCT, DPCF and DPCP, respectively, are reported. The standard Gibbs energy of transfer from W to solvent mixtures ( $\Delta G^{\mathrm{transf}}_{\mathrm{W-mix}}$ ) was estimated for each solute. The results indicate that the transfer process for all systems is a spontaneous process. Calculations under the scaled-particle theory suggest that the work of cavity creation (????G c), which is associated with the transfer of the phenylhydrazone from W to mix, dominates the magnitude of $\mathrm {\Delta} G^{\mathrm{transf}}_{\mathrm{W-mix}}$ . UV spectroscopic measurements suggest that these compounds bind calf thymus(CT)-DNA via intercalation mode in a buffer?C3 mol?L?1 acetonitrile solution. The binding constant (K b) depends on the nitro-substitution on the phenyl moiety and the electronegativity of the heteroatom in the heterocyclic ring. The corresponding Gibbs energy of binding ( $\Delta G_{\mathrm{DNA-B}}^{0}$ ) of phenylhydrazone derivatives to CT-DNA shows a marked dependence with ????G c. The anticancer activity on human breast cancer cell lines MDA-231, MDA-435 and HT-29 human colon adenocarcinoma cell line was evaluated for the compounds NPCT, NPCF, DPCT and PCT.  相似文献   

12.
An extensive characterization of well-defined polystyrene (PS)-grafted silica nanoparticles is reported. Bare SiO2 particles (diameter 50 nm) were functionalized with a suitable initiator for the surface-initiated anionic polymerization of styrene. Both grafted and free PS chains were characterized and compared by size-exclusion chromatography (SEC). PS-grafted particles were characterized by transmission electron microscopy (TEM), thermogravimetric analysis (TGA), small-angle x-ray scattering (SAXS), small-angle neutron scattering (SANS), and dynamic light scattering (DLS). The thickness of the grafted PS chains was obtained by SANS and DLS and scaled with $M_{\mathrm {w}}^{0.6}$ displaying similar behavior with free PS chains in the same solvent used, tetrahydrofuran (THF). Grafting densities obtained from SANS data and TGA were found to be small, and the thickness of the grafted PS chains determined by SANS was found to be similar to $2R_{\mathrm {g}}$ of free PS chains in THF. Both results are consistent with a “coil-like” conformation of the grafted PS chains.  相似文献   

13.
A three-step method to determine the eutectic composition of a binary or ternary mixture is introduced. The method consists in creating a temperature–composition diagram, validating the predicted eutectic composition via differential scanning calorimetry and subsequent T-History measurements. To test the three-step method, we use two novel eutectic phase change materials based on \(\mathrm{Zn}(\hbox {NO}_3)_2\cdot 6\mathrm{H}_{2}{\mathrm O}\) and \(\mathrm{NH}_4\mathrm{NO}_3\)   respectively \(\mathrm{Mn}(\hbox {NO}_3)_2\cdot 6\mathrm{H}_{2}{\hbox {O}}\) and \(\mathrm{NH}_4\mathrm{NO}_3\) with equilibrium liquidus temperatures of 12.4 and 3.9  \(\,^{\circ }\mathrm {C}\) respectively with corresponding melting enthalpies of 135 J \(\mathrm{g}^{-1}\) (237 J \(\mathrm{cm}^{-3}\) ) respectively 133 J \(\mathrm{g}^{-1}\) (225 J \(\mathrm{cm}^{-3}\) ). We find eutectic compositions of 75/25 mass% for \(\mathrm{Zn}(\hbox {NO}_3)_2\cdot \mathrm{6H}_{2}{\mathrm{O}}\) and \(\mathrm{NH}_4\mathrm{NO}_3\) and 73/27 mass% for \(\mathrm{Mn}(\hbox {NO}_3)_2\cdot 6\mathrm{H}_{2}{\mathrm{O}}\) and \(\mathrm{NH}_4\mathrm{NO}_3\) . Considering a temperature range of 15 K around the phase change, a maximum storage capacity of about 172 J \(\mathrm{g}^{-1}\) (302 J \(\mathrm{cm}^{-3}\) ) respectively 162 J \(\mathrm{g}^{-1}\) (274 J \(\mathrm{cm}^{-3}\) ) was determined for \(\mathrm{Zn}(\hbox {NO}_3)_2\cdot \mathrm{6H}_{2}{\mathrm{O}}\) and \(\mathrm{NH}_4\mathrm{NO}_3\) respectively \(\mathrm{Mn}(\hbox {NO}_3)_2\cdot \mathrm{6H}_{2}{\mathrm{O}}\) and \(\mathrm{NH}_4\mathrm{NO}_3\) .  相似文献   

14.
Photoelectrochemical, photoelectrocatalytic, and electrochemical processes of silicon anodic oxidation and hydrogen evolution in aqueous HF solution are discussed in terms of thermodynamic stability of Si, oxides SiO, SiO2, and Si surface hydrides. It is shown that photoelectrochemical oxidation of n-type low-resistivity silicon to SiO2 is catalyzed by Si $^{+}$ photo-hole formation, whereas in the case of p-type Si, the feasibility of this reaction is predetermined by p-type conductivity. It is suggested that anodic oxidation of Si goes through the stage of SiO oxide formation and its subsequent oxidation to SiO2. Such mechanism accounts for chemical inertness of Si phase in HF solutions as well as for selective, anisotropic, and isotropic etching of Si within E ranges from $-0.5$ to 0.35 V, $0.35-0.8~V,$ and $E > 0.8$ V, respectively. Hydrogen evolution reaction on Si surface proceeds at very large overpotential ( $\geq 0.5$ V) through the stage of surface Si hydride formation: $\mathrm {Si + H_{2}O + e^{-} \rightarrow (SiH)_{surf} + OH^{-}}$ (the rate determining step) and $\mathrm {(SiH)_{surf} + H_{2}O + e^{-} \rightarrow Si + H_{2} + OH^{-}}$ . Illumination-related effects of surface reactions relevant to selective and anisotropic etching and nano/micro-structuring of Si surface are discussed.  相似文献   

15.
In this work, the solubilities of nine phenylhydrazone derivatives in water and in 2.82 mol?L?1 aqueous DMSO at 298.15 K, expressed on the molar fraction scale, are reported. The estimated value of the standard Gibbs energy for transferring the solute from water to 2.82 mol?L?1 DMSO, $\Delta G^{0}_{\mathrm{W}\rightarrow \mathrm{mix}}$ , for each system, indicates that it is a spontaneous process. Some of the phenylhydrazone derivatives inhibited the induction of T lymphocyte proliferation by phytohaemagglutinin (PHA) but only DPCT and NPCF efficiently inhibited Guinea pig brain tubulin polymerization. Scaled Particle Theory (SPT) was used to interpretate solubility and biological activity results. Based on the results we suggested that the difference in the work of cavity creation ΔΔG c, associated with the transfer of the phenylhydrazone derivatives from water to 2.82 mol?L?1 aqueous DMSO, is the dominant factor in the magnitude of $\Delta G^{0}_{\mathrm{W}\rightarrow \mathrm{mix}}$ . The later quantity was considered to be an indirect measurement of the hydrophobic character of these derivatives, and it can be used to interpret the biological results.  相似文献   

16.
Polyelectrolyte solutions of nylon-4,6 in 99 vol.% formic acid were electrospun, and then the concentration effect on the solution spinnability was studied. The microstructure of the as-spun nanofibers was characterized by differential scanning calorimetry (DSC) and wide-angle X-ray diffraction (WAXD). Based on the solution rheology, the concentration of the entangled regime and the concentrated regime (? D ) were 1 and 10 wt.%, respectively. To prepare bead-free fibers, the minimum polymer concentration used was 10 wt.%, yielding a fiber diameter of 49?±?13 nm. The fiber diameter (d f) was dependent on the solution viscosity ( $ {\eta_{\mathrm{o}}} $ ) or the polymer concentration (?w) through the following simple scaling law relation: d f?~? $ \eta_{\mathrm{o}}^{0.62 } $ and d f?~? $ {{({\phi_{\mathrm{w}}}/{\phi_{\mathrm{D}}})}^{2.25 }} $ . DSC heating trace on the as-spun nanofibers exhibited double-melting behavior. However, after cooling, the second heating trace showed a single melting peak. WAXD intensity profiles showed that the as-spun nanofibers possessed lamellae with small lateral dimensions, and the lattice parameter difference between a-axis and b-axis was significantly reduced due to the rapid electrospinning process. Both structural features induce the occurrence of the Brill transition of nylon-4,6 in the nanofibers at a much lower temperature of 80 °C than that in the melt-processed film, as-revealed by the temperature-variable WAXD.  相似文献   

17.
Complete active space self-consistent field and second-order multiconfigurational perturbation theory methods have been performed to investigate the quartet excited state ${\tilde{a}}^{4}{A^{\prime\prime}}$ potential energy surface of HCNN radical. Two located minima with respective cis and trans structures could easily dissociate to CH $({\tilde{a}}^{4}\Sigma^{-})$ and $N_{2} ({\tilde{X}}^{1}\Sigma_{\rm g}^{+})$ products with similar barrier of about 16.0 kcal/mol. In addition, four minimum energy crossing points on a surface of intersection between ${\tilde{a}}^{4}A^{\prime\prime}$ and X ( $X={\tilde{X}}^{2}A^{\prime\prime}$ and ${\tilde{A}}^{2}A^{\prime}$ ) states are located near to the minima. However, the intersystem crossing ${\tilde{a}}^{4}A^{\prime\prime} \rightarrow X$ is weak due to the vanishingly small spin–orbit interactions. It further indicates that the direct dissociation on the ${\tilde{a}}^{4}{A^{\prime\prime}}$ state is more favored. This information combined with the comparison with isoelectronic HCCO provides an indirect support to the recent experimental proposal of photodissociation mechanism of HCNN.  相似文献   

18.
β-d-Xylosidase/α-l-arabinofuranosidase from Selenomonas ruminantium is the most active enzyme known for catalyzing hydrolysis of 1,4-β-d-xylooligosaccharides to d-xylose. Catalysis and inhibitor binding by the GH43 β-xylosidase are governed by the protonation states of catalytic base (D14, pK a 5.0) and catalytic acid (E186, pK a 7.2). Biphasic inhibition by triethanolamine of E186A preparations reveals minor contamination by wild-type-like enzyme, the contaminant likely originating from translational misreading. Titration of E186A preparations with triethanolamine allows resolution of binding and kinetic parameters of the E186A mutant from those of the contaminant. The E186A mutation abolishes the pK a assigned to E186; mutant enzyme binds only the neutral aminoalcohol $ \left( {{\text{pH}} - {\text{independent}}\;K_{\text{i}}^{\text{triethanolamine}} = 19\,{\text{mM}}} \right) $ , whereas wild-type enzyme binds only the cationic aminoalcohol $ \left( {{\text{pH}} - {\text{independent}}\;K_{\text{i}}^{\text{triethanolamine}} = 0.065\,{\text{mM}}} \right) $ . At pH 7.0 and 25°C, relative kinetic parameter, $ k_{\text{cat}}^{\text{4NPX}}/k_{\text{cat}}^{\text{4NPA}} $ , for substrates 4-nitrophenyl-β-d-xylopyranoside (4NPX) and 4-nitrophenyl-α-l-arabinofuranoside (4NPA) of E186A is 100-fold that of wild-type enzyme, consistent with the view that, on the enzyme, protonation is of greater importance to the transition state of 4NPA whereas ring deformation dominates the transition state of 4NPX.  相似文献   

19.
Different tetraalkylammonium, viz. N+(CH3)4, N+(C2H5)4, N+(C3H7)4, N+(C4H9)4 along with simple ammonium salts of bis (2-ethylhexyl) sulfosuccinic acid have been prepared by ion-exchange technique. The critical micelle concentration of surfactants with varied counterions have been determined by measuring surface tension and conductivity within the temperature range 283–313 K. Counterion ionization constant, α, and thermodynamic parameters for micellization process viz., $\Delta G_m^{\text{0}} $ , $\Delta H_m^{\text{0}} $ , and $\Delta S_m^{\text{0}} $ and also the surface parameters, Γmax and Amin, in aqueous solution have been determined. Large negative $\Delta G_m^{\text{0}} $ of micellization for all the above counterions supports the spontaneity of micellization. The value of standard free energy, $\Delta G_m^{\text{0}} $ , for different counterions followed the order $${\text{N}}^{\text{ + }} \left( {{\text{CH}}_{\text{3}} } \right)_4 >{\text{NH}}_{\text{4}}^{\text{ + }} >{\text{Na}}^{\text{ + }} >{\text{N}}^{\text{ + }} \left( {{\text{C}}_{\text{2}} {\text{H}}_5 } \right)_{\text{4}} {\text{ $>$ N}}^{\text{ + }} \left( {{\text{C}}_{\text{3}} {\text{H}}_{\text{7}} } \right)_4 >{\text{N}}^{\text{ + }} \left( {{\text{C}}_{\text{4}} {\text{H}}_{\text{9}} } \right)_4 $$ , at a given temperature. This result can be well explained in terms of bulkiness and nature of hydration of the counterion together with hydrophobic and electrostatic interactions.  相似文献   

20.
Exact solutions of the vibrational Schrödinger equation for a generalized potential energy function \(\hbox {V(R)}=\hbox {C}_{0}(\mathrm{{R}-\mathrm {R}}_{\mathrm{e}})^{2}/[\hbox {aR}\,+\,(\mathrm{{b}-\mathrm {a}})\hbox {R}_{\mathrm{e}}]^{2}\) are obtained. It includes those of Dunham, Ogilvie and Simons–Parr–Finlan potentials as special cases corresponding to b \(=\) 1, a \(=\) 0, 1/2, 1, respectively. The analytical wave functions derived are useful to test the quality of numerical methods or to perform perturbative or variational calculations for the problems that cannot be solved exactly. Coherent states for generalized potential, which minimize the position–momentum uncertainty relation are also constructed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号