首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
TiO2-graphene nanocomposite was prepared by hydrolysis of titanium isopropoxide in colloidal suspension of graphene oxide and in situ hydrothermal treatment. The direct electrochemistry and electrocatalysis of hemoglobin in room temperature ionic liquid 1-Butyl-3-methylimidazolium hexafluorophosphate, chitosan and TiO2-graphene nanocomposite modified glassy carbon electrode were investigated. The biosensor was examined by using UV-vis spectroscopy, scanning electron microscopy and electrochemical methods. The results indicated that hemoglobin remained its bioactivity on the modified electrode, showing a couple of well-defined and quasi-reversible redox peaks, corresponding to hemoglobin FeIII/FeII couple. The kinetic parameters for the electrode reaction, such as the formal potential (Eo'), the electron transfer rate constant (ks), the apparent coverage (Γ), and Michaelis–Menten constant (Km) were evaluated. The biosensor showed good electrochemical responses to the reduction of H2O2 in the ranges of 1–1170 μM. The detection limit was 0.3 μM (S/N = 3). The properties of this composite film, together with the bioelectrochemical catalytic activity, could make them useful in the development of bioelectronic devices, and investigation of electrochemistry of other heme proteins at functional interface.  相似文献   

2.
A new electrochemical sensor based on Fe3O4@SiO2‐PANI‐Au nanocomposite was fabricated for modification of glassy carbon electrode (Fe3O4@SiO2‐PANI‐Au GCE). The Fe3O4@SiO2‐PANI‐Au nanocomposite was characterized by TEM, FESEM‐EDS‐Mapping, XRD, and TGA methods. The Fe3O4@SiO2‐PANI‐Au GC electrode exhibited an acceptable sensitivity, fast electrochemical response, and good selectivity for determination of quercetin. Under optimal conditions, the linear range for quercetin concentrations using this sensor was 1.0×10?8 to 1.5×10?5 mol L?1, and the limit of detection was 3.8×10?9 mol L?1. The results illustrated that the offered sensor could be a possible alternative for the measurement of quercetin in food samples and biological fluids.  相似文献   

3.
Fluorine? tin oxide (FTO) nanostructure was developed on the surface of a glass plate using spray payroliziz method. A new electrochemical biosensor was fabricated based on a layer by layer process. In this process chitosan? Fe3O4 (CH? Fe3O4) nanocomposite film was prepared at the surface of FTO electrode by dip? coating method. In the next step, the glucose oxidase (GOx) was immobilized on the CH? Fe3O4/FTO nanocomposite electrode. The GOx/CH? Fe3O4/FTO bioelectrode has a linear range of 10–270 µM and a detection limit of 5 µM. The highest sensitivity was obtained at 1.2 µA mM?1 cm?2.  相似文献   

4.
A carbon paste electrode was modified with 2‐(4‐Oxo‐3‐phenyl‐3,4‐dihydroquinazolinyl)‐N′‐phenyl‐hydrazinecarbothioamide, magnetic core? shell Fe3O4@SiO2/MWCNT nanocomposite and ionic liquid (n‐hexyl‐3‐methylimidazolium hexafluoro phosphate). The electro‐oxidation of hydrazine at the surface of the modified electrode was studied using electrochemical approaches. This modified electrode offers a considerable improvement in voltammetric sensitivity toward hydrazine, compared to the bare electrode. Square wave voltammetry (SWV) exhibits a linear dynamic range from 7.0×10?8 to 5.0×10?4 M and a detection limit of 40.0 nM for hydrazine. The diffusion coefficient and kinetic parameters (such as electron transfer coefficient and the heterogeneous rate constant) for hydrazine oxidation were also determined. The prepared modified electrode exhibits a very good resolution between the voltammetric peaks of hydrazine and phenol that makes it suitable for the detection of hydrazine in the presence of phenol in real samples.  相似文献   

5.
ABSTRACT

A modified carbon paste electrode has been developed for the determination of Pb(ΙΙ) ions based on Fe3O4/eggshell magnetic nanocomposite. The structure and morphology of Fe3O4/eggshell were analysed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The prepared nanocomposite was also characterized by Fourier transform infrared spectroscopy (FT-IR) and vibrating sample magnetometer (VSM). The electrochemical procedure was based on the accumulation and determination of Pb(ΙΙ) ions at the surface of the modified carbon paste electrode with Fe3O4/eggshell nanocomposites and carbon nanotubes by differential pulse anodic stripping voltammetry (DPASV). Various experimental parameters involved in the preconcentration of Pb(ΙΙ) ions and voltammetric stripping step were studied. Under the optimum conditions, the voltammetric peak current of Pb(ΙΙ) occurs at a potential about ?0.5 V. Also, the voltammetric peak current increased linearly with Pb(ΙΙ) concentration in the range of 0.5–200 ng mL?1 and a detection limit of 0.15 ng mL?1 was obtained for Pb(ΙΙ). The selectivity of the proposed electrode for Pb(ΙΙ) ions in the presence of some cations was also examined. The practical application of the proposed modified electrode was evaluated by the determination of Pb(ΙΙ) ions in human hair and water samples. The results were satisfactory for the spiked samples.  相似文献   

6.
《Electroanalysis》2005,17(9):744-748
Magnetic nanoparticles of Fe3O4 approximately 5nm in size were synthesized and characterized by XRD and TEM. A novel gold electrode modified with Fe3O4 nanoparticles was then constructed and was characterized by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The modified electrode exhibited strong promoting effect and high stability toward the electrochemical oxidation of dopamine (DA), which gave reversible redox peaks with a formal potential of 0.192 V (vs. Ag/AgCl) electrode in pH 7.0 phosphate buffer solution (PB). The anodic peak currents (measured by constant potential amperometry) increased linearly with the concentration of dopamine in the range of 1.5×10?7 to 4.0×10?4 M. The detection limit (S/N=3) obtained was 3.0×10?8 M. The relative standard deviation (RSD) of 8 successive scans was 3.41% for 1.5×10?6 M DA. The interference of ascorbic acid (AA) could be eliminated efficiently. The proposed method showed excellent sensitivity and recovery.  相似文献   

7.
Nanostructured Fe2O3–graphene composite was successfully fabricated through a facile solution-based route under mild hydrothermal conditions. Well-crystalline Fe2O3 nanoparticles with 30–60?nm in size are highly encapsulated in graphene nanosheet matrix, as demonstrated by various characterization techniques. As electrode materials for supercapacitors, the as-obtained Fe2O3–graphene nanocomposite exhibits large specific capacitance (151.8?F?g?1 at 1?A?g?1), good rate capability (120?F?g?1 at 6?A?g?1), and excellent cyclability. The significantly enhanced electrochemical performance compared with pure graphene and Fe2O3 nanoparticles may be attributed to the positive synergetic effect between Fe2O3 and graphene. In virtue of their superior electrochemical performance, they will be promising electrode materials for high-performance supercapacitors applications.  相似文献   

8.
In this paper, the mixture of Co3O4–graphene nanocomposite and horseradish peroxidase (HRP) was spread on the surface of carbon ionic liquid electrode (CILE). Then, Nafion film was used for the immobilization. The results of spectroscopy proved that HRP kept up its native structure in the complex material. Direct electrochemistry of HRP resulted in a couple of quasi-reversible redox waves on cyclic voltammograms, reflecting the realization of direct electron transfer of HRP with electrode. The improvement in electrochemical responses was due to the usage of highly conductive Co3O4–graphene nanocomposite with biocompatible interface. Electrochemical parameters such as the electron transfer coefficient (α) was estimated as 0.47, and the apparent heterogeneous electron transfer rate constant (k s) was calculated as 2.90 s?1. The HRP modified electrode exhibited good electrochemical catalytic ability toward the reduction of trichloroacetic acid and NaNO2. As a consequence, an updated third-generation electrochemical HRP biosensor with Co3O4–GR/CILE was constructed successfully.  相似文献   

9.
Triclosan is broadly utilized as preservative or antiseptic in various cosmetic and personal care products. It becomes hazardous for environmental safety and human health more than a certain concentration. In this research, graphene oxide (GO) nanosheets were prepared by composing Fe3O4@Au nanostructure decorated GO together with polypyrrole (PPy) (Fe3O4@Au‐PPy/GO nanocomposite) in a facile way. The composite excellent increased the electrochemical response, presenting a high sensitive electrochemical method for triclosan detection. The synthesized Fe3O4@Au‐PPy/GO nanocomposite was characterized for its morphological, magnetically and structural properties by FESEM‐mapping, TEM, and XRD. The Fe3O4@Au‐PPy/GO nanocomposites modified glassy carbon electrodes (GCE), Fe3O4@Au‐PPy/GO GCE, showed a higher sensitivity good stability, reproducibility, lower LOD (2.5×10?9 M) and potential practical application in electrochemical detection of triclosan under optimized experimental conditions.  相似文献   

10.
《Electroanalysis》2004,16(20):1734-1738
A novel biosensor by electrochemical codeposited Pt‐Fe(III) nanocomposites and DNA film was constructed and applied to the detection of uric acid (UA) in the presence of high concentration of ascorbic acid (AA). Based on its strong catalytic activity toward the oxidation of UA and AA, the modified electrode resolved the overlapping voltammetric response of UA and AA into two well‐defined peaks with a large anodic peak difference (ΔEpa) of about 380mV. The catalytic peak current obtained from differential pulse voltammetry (DPV) was linearly dependent on the UA concentration from 3.8×10?6 to 1.6×10?4 M (r=0.9967) with coexistence of 5.0×10?4 M AA. The detection limit was 1.8×10?6 M (S/N=3) and the presence of 20 times higher concentration of AA did not interfere with the determination. The modified electrode shows good sensitivity, selectivity and stability.  相似文献   

11.
Acetaminophen (AC) is one of the most commonly prescribed analgesic and antipyretic drug, which is considered to be safe as well as effective. Rational use of AC does not pose any toxicity or adverse effects, however, an overdose or prolonged use could lead to nephrotoxicity and severe hepatoxicity. Thus, monitoring of AC is essential for drug safety. In this work, a facile Fe2O3/reduced graphene oxide (Fe2O3/RGO) nanocomposite was synthesized for improved electrochemical detection of AC. The material was synthesized through a simple one-step process. For characterization of synthesized Fe2O3/RGO composite, energy-dispersive X-ray spectroscopy (EDX), field emission-scanning electron microscopy (FE-SEM) and electrochemical impedance spectroscopy (EIS) were employed. To verify the electrochemical performance of Fe2O3/RGO nanocomposite, GCE was modified with this nanocomposite and utilized for quantification of AC. The detection limit of AC was 21 nM in a linear range from 1.0 × 10−7 to 74 × 10−6 M. Furthermore, the sensor also unveiled good stability, promising sensitivity and selectivity. Hence, Fe2O3/RGO could be applied as a sensing material for electrochemical detection of AC. Finally, the analytical utility of the method was also verified in human urine and drug samples with some preliminary treatments.  相似文献   

12.
Here, we reported on a one‐step fabrication of magnetite Fe3O4 nanoparticles/indium tin oxide (ITO) electrode based on the direct growing of Fe3O4 nanoparticles on the ITO surface by using a solvothermal process. The modified electrode was used as electrochemical methotrexate (MTX) biosensor with high sensitivity based on cyclic voltammetry and square wave voltammetry techniques. The results demonstrated a linear relationship between the MTX concentration and its oxidation current peak over a wide range from 10?5 to 10?14 mole/L with a limit of detection of 0.4×10?15 M based on the square wave voltammetry (SWV) technique. In addition, Fe3O4/ITO electrode showed a good capability for measuring very low concentrations of MTX drug dissolved in human serum solution. Also, Fe3O4/ITO electrode was used for detecting MTX in blood serum samples collected from patients after their treatment with MTX. The prepared electrode showed the higher sensitivity that higher than the Viva‐E instrument, which opens the door for developing a cheap, simple and higher sensitive MTX sensor.  相似文献   

13.
We report the non-covalent functionalization of a multi-walled carbon nanotube (MWCNT) electrode with a biomimetic model of the horseradish peroxidase (HRP) active site. By modifying the MWCNT electrode surface with imidazole-modified polypyrrole, a new biomimetic complex of HRP was synthesized on the MWCNT sidewalls via the coordination of imidazole (Im) to the metal centre of iron protoporphyrin IX, affording (Im)(PP)FeIII. Compared to the pi-stacking of non-coordinated (PP)FeIII on a MWCNT electrode, the (Im)(PP)FeIII-modified MWCNT electrode exhibits higher electrocatalytic activity with an I max = 0.52 mA cm–2 for the reduction of H2O2, accompanied by a high onset potential of 0.43 V vs. Ag/AgCl. The performances of these novel surface-confined HRP mimics were compared to those of a MWCNT electrode modified by HRP. Although the enzyme electrode displays a higher electrocatalytic activity towards H2O2 reduction, the (Im)(PP)FeIII-modified MWCNT electrode exhibits a markedly higher operational stability, retaining 63% of its initial activity after one month.  相似文献   

14.
A novel non-enzymatic electrochemical sensor based on a nanoporous gold electrode modified with platinum nanoparticles was constructed for the determination of hydrogen peroxide (H2O2). Platinum nanoparticles exhibit good electrocatalytic activity towards hydrogen peroxide. The nanoporous gold (NPG) increases the effective surface area and has the capacity to promote electron-transfer reactions. With electrodeposition of Pt nanoparticles (NPs) on the surface of the nanoporous gold, the modified Au electrode afforded a fast, sensitive and selective electrochemical method for the determination of H2O2. The linear range for the detection of H2O2 was from 1.0 × 10?7 M to 2.0 × 10?5 M while the calculated limit of detection was 7.2 × 10?8 M on the basis of the 3σ/slope (σ represents the standard deviation of the blank samples). These findings could lead to the widespread use of electrochemical sensors to detect H2O2.  相似文献   

15.
A novel electrochemical sensor for ascorbic acid (AA) detection based on platinum electrode modified with polyterthiophene (P3T) and doped with metallic particles (Cu, Co, Ag, Au, Pd) was constructed. The electrocatalytic performances of the modified electrode with polyterthiophene-metallic particles related to the detection of AA, showed a better catalytic activity compared to the modified electrode with polyterthiophene film. The obtained results demonstrate also that the use of P3T–Ag nanocomposite allows a good sensitivity; which gives a high response in oxidation peak of AA. In order to have a good performance using this sensor, several parameters such as polymerization time of the film and immersion time of the film in AgNO3 solution were optimized.  相似文献   

16.
An electrochemical sensor is developed in this work based on the new perovskite-type nanomaterial LaNiTiO3–Fe3O4 for sensitive determination of o-phenylenediamine (OPD). As-synthesized materials and the surface of as-fabricated electrochemical sensor are characterized by X-ray diffraction, atomic force microscope, and electrochemical impedance spectroscopy, respectively. The results of characterizations depict that the sample is of nanoscaled complex oxides consisting of perovskite structure and spinel structure, and has good conductive properties. The construction and experimental conditions of the electrochemical sensor are also optimized. The electrochemical properties of OPD at glassy carbon electrode modified with LaNiTiO3–Fe3O4 are investigated in alkaline solution (NaOH). The new electrochemical sensor exhibits high electrocatalytic activity and stability in NaOH, and a promotion of electrochemical oxidation of OPD at low potentials can be obviously observed. A wide linear range is obtained from 1.0?×?10?6 to 7.0?×?10?3 M with a relative low detection limit of 0.15 μM (S/N?=?3) under optimal conditions. Furthermore, the sensor exhibits reliable results for the determination of OPD in commercial samples.  相似文献   

17.
An amperometric tyramine biosensor based on poly‐L‐lysine (PLL) and Fe3O4 nanoparticles (Fe3O4NP) modified screen printed carbon electrode (SPCE) was developed. PLL was formed on the SPCE by the electropolymerization of L‐lysine. Subsequently, Fe3O4NP suspension prepared in chitosan (CH) solution was casted onto the PLL/SPCE. Tyrosinase (Ty) enzyme was immobilized onto the modified Fe3O4?CH/PLL/SPCE and the electrode was coated with Nafion to fabricate the Ty/Fe3O4?CH/PLL/SPCE. Different techniques including scanning electron microscopy, chronoamperometry (i–t curve), cyclic voltammetry and electrochemical impedance spectroscopy were utilized to study the fabrication processes, electrochemical characteristics and performance parameters of the biosensor. The analytical performance of the tyramine biosensor was evaluated with respect to linear range, sensitivity, limit of detection, repeatability and reproducibility. The response of the biosensor to tyramine was linear between 4.9×10?7–6.3×10?5 M with a detection limit of 7.5×10?8 M and sensitivity of 71.36 μA mM?1 (595 μA mM?1 cm?2). The application of the developed biosensor for the determination of tyramine was successfully tested in cheese sample and mean analytical recovery of added tyramine in cheese extract was calculated as 101.2±2.1 %. The presented tyramine biosensor is a promising approach for tyramine analysis in real samples due to its high sensitivity, rapid response and easy fabrication.  相似文献   

18.
Magnetic Fe3O4 nanoparticles functionalized multiwalled carbon nanotubes (nano‐Fe3O4 MWNTs) were prepared for electrochemical sensors. 2‐amino‐5‐mercapto‐1,3,4‐thiadiazole was used as a connecter to form a network that connected nano‐Fe3O4 MWNTs to the Au electrode surface. Modified process of the electrode was studied with SEM, TEM and cyclic voltammetry. Cyclic voltammetry and amperometric i‐t curve were used to investigate characteristics of the obtained electrode. The sensor has been successfully used on the direct detection of catechol and showed excellent performances. The linear regression equation was Ipa(μA)=0.07763+0.16739 C (μmol/L); R=0.9993 and the detection limit was 5.38×10?8 mol/L. The modified electrode showed good reproducibility and stability.  相似文献   

19.
Based on the immobilization of horseradish peroxidase (HRP) in chitosan(CS) on a glassy carbon electrode (GCE) modified with the Au‐Pt alloy nanoparticles (NPs) / polyaniline nanotube (nanoPAN) nanocomposite film, a novel hydrogen peroxide biosensor was constructed. The modified processes of GCE were monitored by cyclic voltammetry and electrochemical impedance spectroscopy. Au‐PtNPs/nanoPAN/CS had a better synergistic electrochemical effect than did AuNPs/nanoPAN/CS or PtNPs/nanoPAN/CS. The amperometric response of the biosensor towards H2O2 was investigated by successively adding aliquots of H2O2 to a continuous stirring phosphate buffer solution under the optimized conditions. Because Au‐PtNPs have unique catalytic properties and good biocompatibility, and especially Au‐PtNPs and nanoPAN have synergistic augmentation for facilitating electron‐transfer, the biosensor displayed a fast response time (<2 s) and broad linear response to H2O2 in the range from 1.0 to 2200 μmol L?1 with a relatively low detection limit of 0.5 μmol L?1 at 3 times the background noise. Moreover, the biosensor can be applied in practical analysis and exhibited high sensitivity, good reproducibility, and long‐term stability.  相似文献   

20.
In this paper, a carbon ionic liquid electrode (CILE) was fabricated using ionic liquid 1-hexylpyridinium hexafluorophosphate as modifier, which was further in situ electrodeposited with graphene (GR) and gold nanoparticles step by step to get an Au/GR nanocomposite modified CILE. Myoglobin (Mb) was further immobilized on the Au/GR/CILE surface with Nafion film to get the modified electrode denoted as Nafion/Mb/Au/GR/CILE. Cyclic voltammetric experiments indicated that a pair of well-defined quasi-reversible redox peaks appeared in pH 3.0 phosphate buffer solution with the formal potential (E 0′) located at ?0.197 V (vs. saturated calomel electrode), which was the typical characteristics of Mb heme Fe(III)/Fe(II) redox couples. Thus, the direct electron transfer rate between Mb and the modified electrode was promoted due to the high conductivity and increased surface area of Au/GR nanocomposite present on electrode surface. Based on the cyclic voltammetric data, the electrochemical parameters of Mb on the modified electrode were calculated. The Mb-modified electrode showed excellent electrocatalytic activities towards the reduction of trichloroacetic acid and H2O2 with wider linear range and lower detection limit. Using GR and Au nanoparticles modified CILE, a new third-generation electrochemical Mb biosensor was constructed with good stability and reproducibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号